Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

The methylomes of six bacteria.

Murray IA, Clark TA, Morgan RD, Boitano M, Anton BP, Luong K, Fomenkov A, Turner SW, Korlach J, Roberts RJ.

Nucleic Acids Res. 2012 Dec;40(22):11450-62. doi: 10.1093/nar/gks891. Epub 2012 Oct 2. Erratum in: Nucleic Acids Res. 2014 Apr;42(6):4140.

2.

Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes.

Beaulaurier J, Zhang XS, Zhu S, Sebra R, Rosenbluh C, Deikus G, Shen N, Munera D, Waldor MK, Chess A, Blaser MJ, Schadt EE, Fang G.

Nat Commun. 2015 Jun 15;6:7438. doi: 10.1038/ncomms8438.

3.

Lineage-Specific Methyltransferases Define the Methylome of the Globally Disseminated Escherichia coli ST131 Clone.

Forde BM, Phan MD, Gawthorne JA, Ashcroft MM, Stanton-Cook M, Sarkar S, Peters KM, Chan KG, Chong TM, Yin WF, Upton M, Schembri MA, Beatson SA.

MBio. 2015 Nov 17;6(6):e01602-15. doi: 10.1128/mBio.01602-15.

4.

Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing.

Clark TA, Murray IA, Morgan RD, Kislyuk AO, Spittle KE, Boitano M, Fomenkov A, Roberts RJ, Korlach J.

Nucleic Acids Res. 2012 Feb;40(4):e29. doi: 10.1093/nar/gkr1146. Epub 2011 Dec 7.

5.

The complex methylome of the human gastric pathogen Helicobacter pylori.

Krebes J, Morgan RD, Bunk B, Spröer C, Luong K, Parusel R, Anton BP, König C, Josenhans C, Overmann J, Roberts RJ, Korlach J, Suerbaum S.

Nucleic Acids Res. 2014 Feb;42(4):2415-32. doi: 10.1093/nar/gkt1201. Epub 2013 Dec 2.

6.

MethSMRT: an integrative database for DNA N6-methyladenine and N4-methylcytosine generated by single-molecular real-time sequencing.

Ye P, Luan Y, Chen K, Liu Y, Xiao C, Xie Z.

Nucleic Acids Res. 2017 Jan 4;45(D1):D85-D89. doi: 10.1093/nar/gkw950. Epub 2016 Oct 18.

7.

The complete methylome of Helicobacter pylori UM032.

Lee WC, Anton BP, Wang S, Baybayan P, Singh S, Ashby M, Chua EG, Tay CY, Thirriot F, Loke MF, Goh KL, Marshall BJ, Roberts RJ, Vadivelu J.

BMC Genomics. 2015 Jun 2;16:424. doi: 10.1186/s12864-015-1585-2.

8.
9.

SMRT sequencing of the Campylobacter coli BfR-CA-9557 genome sequence reveals unique methylation motifs.

Zautner AE, Goldschmidt AM, Thürmer A, Schuldes J, Bader O, Lugert R, Groß U, Stingl K, Salinas G, Lingner T.

BMC Genomics. 2015 Dec 21;16:1088. doi: 10.1186/s12864-015-2317-3.

10.

Functional analysis of putative restriction-modification system genes in the Helicobacter pylori J99 genome.

Kong H, Lin LF, Porter N, Stickel S, Byrd D, Posfai J, Roberts RJ.

Nucleic Acids Res. 2000 Sep 1;28(17):3216-23.

11.

Genome Modification in Enterococcus faecalis OG1RF Assessed by Bisulfite Sequencing and Single-Molecule Real-Time Sequencing.

Huo W, Adams HM, Zhang MQ, Palmer KL.

J Bacteriol. 2015 Jun;197(11):1939-51. doi: 10.1128/JB.00130-15. Epub 2015 Mar 30.

12.

Analysis of the Campylobacter jejuni genome by SMRT DNA sequencing identifies restriction-modification motifs.

O'Loughlin JL, Eucker TP, Chavez JD, Samuelson DR, Neal-McKinney J, Gourley CR, Bruce JE, Konkel ME.

PLoS One. 2015 Feb 19;10(2):e0118533. doi: 10.1371/journal.pone.0118533. eCollection 2015.

13.

DNA Methylation Assessed by SMRT Sequencing Is Linked to Mutations in Neisseria meningitidis Isolates.

Sater MR, Lamelas A, Wang G, Clark TA, Röltgen K, Mane S, Korlach J, Pluschke G, Schmid CD.

PLoS One. 2015 Dec 11;10(12):e0144612. doi: 10.1371/journal.pone.0144612. eCollection 2015.

14.

Detection of N6-methyladenine in GATC sequences of Selenomonas ruminantium.

Pristas P, Molnarova V, Javorsky P.

J Basic Microbiol. 1998;38(4):283-7.

PMID:
9791949
15.

Diversity of DNA methyltransferases that recognize asymmetric target sequences.

Madhusoodanan UK, Rao DN.

Crit Rev Biochem Mol Biol. 2010 Apr;45(2):125-45. doi: 10.3109/10409231003628007. Review.

PMID:
20184512
16.

Precision methylome characterization of Mycobacterium tuberculosis complex (MTBC) using PacBio single-molecule real-time (SMRT) technology.

Zhu L, Zhong J, Jia X, Liu G, Kang Y, Dong M, Zhang X, Li Q, Yue L, Li C, Fu J, Xiao J, Yan J, Zhang B, Lei M, Chen S, Lv L, Zhu B, Huang H, Chen F.

Nucleic Acids Res. 2016 Jan 29;44(2):730-43. doi: 10.1093/nar/gkv1498. Epub 2015 Dec 23.

17.

Direct detection of methylation in genomic DNA.

Bart A, van Passel MW, van Amsterdam K, van der Ende A.

Nucleic Acids Res. 2005 Aug 9;33(14):e124.

18.

Evolutionary relationship of Alw26I, Eco31I and Esp3I, restriction endonucleases that recognise overlapping sequences.

Bitinaite J, Mitkaite G, Dauksaite V, Jakubauskas A, Timinskas A, Vaisvila R, Lubys A, Janulaitis A.

Mol Genet Genomics. 2002 Jul;267(5):664-72. Epub 2002 Jun 19.

PMID:
12172806
19.

Bacterial DNA methylation and gene transfer efficiency.

Allamane S, Jourdes P, Ratel D, Vicat JM, Dupré I, Lainé M, Berger F, Benabid AL, Wion D.

Biochem Biophys Res Commun. 2000 Oct 5;276(3):1261-4.

PMID:
11027620
20.

Base-resolution detection of N4-methylcytosine in genomic DNA using 4mC-Tet-assisted-bisulfite- sequencing.

Yu M, Ji L, Neumann DA, Chung DH, Groom J, Westpheling J, He C, Schmitz RJ.

Nucleic Acids Res. 2015 Dec 2;43(21):e148. doi: 10.1093/nar/gkv738. Epub 2015 Jul 15.

Supplemental Content

Support Center