Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 166

1.

Myeloperoxidase-derived oxidants rapidly oxidize and disrupt zinc-cysteine/histidine clusters in proteins.

Cook NL, Pattison DI, Davies MJ.

Free Radic Biol Med. 2012 Dec 1;53(11):2072-80. doi: 10.1016/j.freeradbiomed.2012.09.033. Epub 2012 Sep 29.

PMID:
23032100
2.

Selenium-containing amino acids are targets for myeloperoxidase-derived hypothiocyanous acid: determination of absolute rate constants and implications for biological damage.

Skaff O, Pattison DI, Morgan PE, Bachana R, Jain VK, Priyadarsini KI, Davies MJ.

Biochem J. 2012 Jan 1;441(1):305-16. doi: 10.1042/BJ20101762.

3.

Hypothiocyanous acid is a more potent inducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acid or hypobromous acid.

Lloyd MM, van Reyk DM, Davies MJ, Hawkins CL.

Biochem J. 2008 Sep 1;414(2):271-80. doi: 10.1042/BJ20080468.

PMID:
18459943
4.

Comparative reactivity of the myeloperoxidase-derived oxidants hypochlorous acid and hypothiocyanous acid with human coronary artery endothelial cells.

Lloyd MM, Grima MA, Rayner BS, Hadfield KA, Davies MJ, Hawkins CL.

Free Radic Biol Med. 2013 Dec;65:1352-62. doi: 10.1016/j.freeradbiomed.2013.10.007. Epub 2013 Oct 10.

PMID:
24120969
5.

Reevaluation of the rate constants for the reaction of hypochlorous acid (HOCl) with cysteine, methionine, and peptide derivatives using a new competition kinetic approach.

Storkey C, Davies MJ, Pattison DI.

Free Radic Biol Med. 2014 Aug;73:60-6. doi: 10.1016/j.freeradbiomed.2014.04.024. Epub 2014 May 1.

PMID:
24794410
6.

Hypothiocyanous acid reactivity with low-molecular-mass and protein thiols: absolute rate constants and assessment of biological relevance.

Skaff O, Pattison DI, Davies MJ.

Biochem J. 2009 Jul 29;422(1):111-7. doi: 10.1042/BJ20090276.

PMID:
19492988
7.

Preventing protein oxidation with sugars: scavenging of hypohalous acids by 5-selenopyranose and 4-selenofuranose derivatives.

Storkey C, Pattison DI, White JM, Schiesser CH, Davies MJ.

Chem Res Toxicol. 2012 Nov 19;25(11):2589-99. doi: 10.1021/tx3003593. Epub 2012 Oct 30.

PMID:
23075063
8.

Tryptophan residues are targets in hypothiocyanous acid-mediated protein oxidation.

Hawkins CL, Pattison DI, Stanley NR, Davies MJ.

Biochem J. 2008 Dec 15;416(3):441-52. doi: 10.1042/BJ20070941.

PMID:
18652572
9.
10.

Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids.

Pattison DI, Davies MJ, Hawkins CL.

Free Radic Res. 2012 Aug;46(8):975-95. doi: 10.3109/10715762.2012.667566. Epub 2012 Apr 23. Review.

PMID:
22348603
11.

Comparative reactivity of the myeloperoxidase-derived oxidants HOCl and HOSCN with low-density lipoprotein (LDL): Implications for foam cell formation in atherosclerosis.

Ismael FO, Proudfoot JM, Brown BE, van Reyk DM, Croft KD, Davies MJ, Hawkins CL.

Arch Biochem Biophys. 2015 May 1;573:40-51. doi: 10.1016/j.abb.2015.03.008. Epub 2015 Mar 18.

PMID:
25795019
12.
13.

The smoking-associated oxidant hypothiocyanous acid induces endothelial nitric oxide synthase dysfunction.

Talib J, Kwan J, Suryo Rahmanto A, Witting PK, Davies MJ.

Biochem J. 2014 Jan 1;457(1):89-97. doi: 10.1042/BJ20131135.

PMID:
24112082
14.

The oxidation of yeast alcohol dehydrogenase-1 by hydrogen peroxide in vitro.

Men L, Wang Y.

J Proteome Res. 2007 Jan;6(1):216-25.

PMID:
17203966
15.

What are the plasma targets of the oxidant hypochlorous acid? A kinetic modeling approach.

Pattison DI, Hawkins CL, Davies MJ.

Chem Res Toxicol. 2009 May;22(5):807-17. doi: 10.1021/tx800372d.

PMID:
19326902
16.

Myeloperoxidase-derived oxidants selectively disrupt the protein core of the heparan sulfate proteoglycan perlecan.

Rees MD, Whitelock JM, Malle E, Chuang CY, Iozzo RV, Nilasaroya A, Davies MJ.

Matrix Biol. 2010 Jan;29(1):63-73. doi: 10.1016/j.matbio.2009.09.005. Epub 2009 Sep 27.

17.

The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues.

Cook NL, Moeke CH, Fantoni LI, Pattison DI, Davies MJ.

Free Radic Biol Med. 2016 Jan;90:195-205. doi: 10.1016/j.freeradbiomed.2015.11.025. Epub 2015 Nov 23.

PMID:
26616646
18.

Disruption of the iron-sulfur cluster of aconitase by myeloperoxidase-derived oxidants.

Talib J, Cook N, Pattison D, Davies M.

Free Radic Biol Med. 2014 Oct;75 Suppl 1:S27-8. doi: 10.1016/j.freeradbiomed.2014.10.752. Epub 2014 Dec 10.

PMID:
26461324
19.

Myeloperoxidase-derived oxidants inhibit sarco/endoplasmic reticulum Ca2+-ATPase activity and perturb Ca2+ homeostasis in human coronary artery endothelial cells.

Cook NL, Viola HM, Sharov VS, Hool LC, Schöneich C, Davies MJ.

Free Radic Biol Med. 2012 Mar 1;52(5):951-61. doi: 10.1016/j.freeradbiomed.2011.12.001. Epub 2011 Dec 23.

20.

Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation.

Pattison DI, Davies MJ.

Biochemistry. 2005 May 17;44(19):7378-87.

PMID:
15882077

Supplemental Content

Support Center