Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae.

Cockram J, Thiel T, Steuernagel B, Stein N, Taudien S, Bailey PC, O'Sullivan DM.

PLoS One. 2012;7(9):e45307. doi: 10.1371/journal.pone.0045307. Epub 2012 Sep 24.

2.

The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis.

Griffiths S, Dunford RP, Coupland G, Laurie DA.

Plant Physiol. 2003 Apr;131(4):1855-67.

3.

Molecular, phylogenetic and comparative genomic analysis of the cytokinin oxidase/dehydrogenase gene family in the Poaceae.

Mameaux S, Cockram J, Thiel T, Steuernagel B, Stein N, Taudien S, Jack P, Werner P, Gray JC, Greenland AJ, Powell W.

Plant Biotechnol J. 2012 Jan;10(1):67-82. doi: 10.1111/j.1467-7652.2011.00645.x. Epub 2011 Aug 15.

4.

The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley.

Kikuchi R, Kawahigashi H, Oshima M, Ando T, Handa H.

J Exp Bot. 2012 Jan;63(2):773-84. doi: 10.1093/jxb/err299. Epub 2011 Oct 20.

5.

Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses.

Higgins JA, Bailey PC, Laurie DA.

PLoS One. 2010 Apr 19;5(4):e10065. doi: 10.1371/journal.pone.0010065.

6.

Evolution of VRN2/Ghd7-Like Genes in Vernalization-Mediated Repression of Grass Flowering.

Woods DP, McKeown MA, Dong Y, Preston JC, Amasino RM.

Plant Physiol. 2016 Apr;170(4):2124-35. doi: 10.1104/pp.15.01279. Epub 2016 Feb 4.

7.

Tracking the evolution of a cold stress associated gene family in cold tolerant grasses.

Sandve SR, Rudi H, Asp T, Rognli OA.

BMC Evol Biol. 2008 Sep 5;8:245. doi: 10.1186/1471-2148-8-245.

8.

The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks.

Wang J, Long Y, Wu B, Liu J, Jiang C, Shi L, Zhao J, King GJ, Meng J.

BMC Evol Biol. 2009 Nov 25;9:271. doi: 10.1186/1471-2148-9-271.

9.

Identification of a CONSTANS homologous gene with distinct diurnal expression patterns in varied photoperiods in ramie (Boehmeria nivea L. Gaud).

Liu T, Zhu S, Tang Q, Tang S.

Gene. 2015 Apr 10;560(1):63-70. doi: 10.1016/j.gene.2015.01.045. Epub 2015 Jan 24.

PMID:
25623329
10.

Negative correlation between rates of molecular evolution and flowering cycles in temperate woody bamboos revealed by plastid phylogenomics.

Ma PF, Vorontsova MS, Nanjarisoa OP, Razanatsoa J, Guo ZH, Haevermans T, Li DZ.

BMC Plant Biol. 2017 Dec 21;17(1):260. doi: 10.1186/s12870-017-1199-8.

11.

Organization of the prolamin gene family provides insight into the evolution of the maize genome and gene duplications in grass species.

Xu JH, Messing J.

Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14330-5. doi: 10.1073/pnas.0807026105. Epub 2008 Sep 15.

12.
13.

A Phylogenomic Assessment of Ancient Polyploidy and Genome Evolution across the Poales.

McKain MR, Tang H, McNeal JR, Ayyampalayam S, Davis JI, dePamphilis CW, Givnish TJ, Pires JC, Stevenson DW, Leebens-Mack JH.

Genome Biol Evol. 2016 Apr 21;8(4):1150-64. doi: 10.1093/gbe/evw060.

14.

High time for a roll call: gene duplication and phylogenetic relationships of TCP-like genes in monocots.

Mondragón-Palomino M, Trontin C.

Ann Bot. 2011 Jun;107(9):1533-44. doi: 10.1093/aob/mcr059. Epub 2011 Mar 28.

15.

Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus.

Chia TY, Müller A, Jung C, Mutasa-Göttgens ES.

J Exp Bot. 2008;59(10):2735-48. doi: 10.1093/jxb/ern129. Epub 2008 May 20.

16.

Genome-Wide Identification, Characterization, and Stress-Responsive Expression Profiling of Genes Encoding LEA (Late Embryogenesis Abundant) Proteins in Moso Bamboo (Phyllostachys edulis).

Huang Z, Zhong XJ, He J, Jin SH, Guo HD, Yu XF, Zhou YJ, Li X, Ma MD, Chen QB, Long H.

PLoS One. 2016 Nov 9;11(11):e0165953. doi: 10.1371/journal.pone.0165953. eCollection 2016.

17.

OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice.

Kim SK, Yun CH, Lee JH, Jang YH, Park HY, Kim JK.

Planta. 2008 Jul;228(2):355-65. doi: 10.1007/s00425-008-0742-0. Epub 2008 May 1.

PMID:
18449564
18.

Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals.

Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C.

Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14908-13. doi: 10.1073/pnas.0902350106. Epub 2009 Aug 13.

19.

Genome-wide analysis of syntenic gene deletion in the grasses.

Schnable JC, Freeling M, Lyons E.

Genome Biol Evol. 2012;4(3):265-77. doi: 10.1093/gbe/evs009. Epub 2012 Jan 23.

20.

The Evolution of Photoperiod-Insensitive Flowering in Sorghum, A Genomic Model for Panicoid Grasses.

Cuevas HE, Zhou C, Tang H, Khadke PP, Das S, Lin YR, Ge Z, Clemente T, Upadhyaya HD, Hash CT, Paterson AH.

Mol Biol Evol. 2016 Sep;33(9):2417-28. doi: 10.1093/molbev/msw120. Epub 2016 Jun 22.

Supplemental Content

Support Center