Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 130

1.

Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2.

Hull CM, Bader O, Parker JE, Weig M, Gross U, Warrilow AG, Kelly DE, Kelly SL.

Antimicrob Agents Chemother. 2012 Dec;56(12):6417-21. doi: 10.1128/AAC.01145-12. Epub 2012 Oct 1.

2.

Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals.

Eddouzi J, Parker JE, Vale-Silva LA, Coste A, Ischer F, Kelly S, Manai M, Sanglard D.

Antimicrob Agents Chemother. 2013 Jul;57(7):3182-93. doi: 10.1128/AAC.00555-13. Epub 2013 Apr 29.

3.

Facultative sterol uptake in an ergosterol-deficient clinical isolate of Candida glabrata harboring a missense mutation in ERG11 and exhibiting cross-resistance to azoles and amphotericin B.

Hull CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG, Kelly DE, Kelly SL.

Antimicrob Agents Chemother. 2012 Aug;56(8):4223-32. doi: 10.1128/AAC.06253-11. Epub 2012 May 21.

4.

Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms.

Sanglard D, Coste AT.

Antimicrob Agents Chemother. 2015 Oct 19;60(1):229-38. doi: 10.1128/AAC.02157-15. Print 2016 Jan.

5.

The activity of echinocandins, amphotericin B and voriconazole against fluconazole-susceptible and fluconazole-resistant Brazilian Candida glabrata isolates.

Mario DA, Denardi LB, Bandeira LA, Antunes MS, Santurio JM, Severo LC, Alves SH.

Mem Inst Oswaldo Cruz. 2012 May;107(3):433-6.

6.
7.

Fluconazole exposure rather than clonal spreading is correlated with the emergence of Candida glabrata with cross-resistance to triazole antifungal agents.

Chen TC, Chen YH, Chen YC, Lu PL.

Kaohsiung J Med Sci. 2012 Jun;28(6):306-15. doi: 10.1016/j.kjms.2011.11.011. Epub 2012 Apr 4.

8.

STB5 is a negative regulator of azole resistance in Candida glabrata.

Noble JA, Tsai HF, Suffis SD, Su Q, Myers TG, Bennett JE.

Antimicrob Agents Chemother. 2013 Feb;57(2):959-67. doi: 10.1128/AAC.01278-12. Epub 2012 Dec 10.

9.

Identification and characterization of four azole-resistant erg3 mutants of Candida albicans.

Martel CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG, Rolley N, Kelly DE, Kelly SL.

Antimicrob Agents Chemother. 2010 Nov;54(11):4527-33. doi: 10.1128/AAC.00348-10. Epub 2010 Aug 23.

10.

Mechanisms of azole resistance among clinical isolates of Candida glabrata in Poland.

Szweda P, Gucwa K, Romanowska E, Dzierzanowska-Fangrat K, Naumiuk Ł, Brillowska-Dabrowska A, Wojciechowska-Koszko I, Milewski S.

J Med Microbiol. 2015 Jun;64(6):610-9. doi: 10.1099/jmm.0.000062. Epub 2015 Mar 27.

PMID:
25818698
11.

Assessment of the in vitro kinetic activity of caspofungin against Candida glabrata.

Nagappan V, Boikov D, Vazquez JA.

Antimicrob Agents Chemother. 2010 Jan;54(1):522-5. doi: 10.1128/AAC.01339-08. Epub 2009 Oct 19.

12.

UPC2A is required for high-level azole antifungal resistance in Candida glabrata.

Whaley SG, Caudle KE, Vermitsky JP, Chadwick SG, Toner G, Barker KS, Gygax SE, Rogers PD.

Antimicrob Agents Chemother. 2014 Aug;58(8):4543-54. doi: 10.1128/AAC.02217-13. Epub 2014 May 27.

13.

Reliability of the Vitek 2 yeast susceptibility test for detection of in vitro resistance to fluconazole and voriconazole in clinical isolates of Candida albicans and Candida glabrata.

Posteraro B, Martucci R, La Sorda M, Fiori B, Sanglard D, De Carolis E, Florio AR, Fadda G, Sanguinetti M.

J Clin Microbiol. 2009 Jun;47(6):1927-30. doi: 10.1128/JCM.02070-08. Epub 2009 Apr 29.

14.

Voriconazole-induced inhibition of the fungicidal activity of amphotericin B in Candida strains with reduced susceptibility to voriconazole: an effect not predicted by the MIC value alone.

Lignell A, Löwdin E, Cars O, Sanglard D, Sjölin J.

Antimicrob Agents Chemother. 2011 Apr;55(4):1629-37. doi: 10.1128/AAC.00791-10. Epub 2011 Jan 31.

15.

Rapid acquisition of stable azole resistance by Candida glabrata isolates obtained before the clinical introduction of fluconazole.

Borst A, Raimer MT, Warnock DW, Morrison CJ, Arthington-Skaggs BA.

Antimicrob Agents Chemother. 2005 Feb;49(2):783-7.

16.

Candida spp. in vitro susceptibility profile to four antifungal agents. Resistance surveillance study in Venezuelan strains.

Panizo MM, Reviákina V, Dolande M, Selgrad S.

Med Mycol. 2009 Mar;47(2):137-43. doi: 10.1080/13693780802144339. Epub 2008 Jun 27.

PMID:
18651308
17.

Clinical significance of azole antifungal drug cross-resistance in Candida glabrata.

Panackal AA, Gribskov JL, Staab JF, Kirby KA, Rinaldi M, Marr KA.

J Clin Microbiol. 2006 May;44(5):1740-3.

19.

Geographic variation in the frequency of isolation and fluconazole and voriconazole susceptibilities of Candida glabrata: an assessment from the ARTEMIS DISK Global Antifungal Surveillance Program.

Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Barton R, Bijie H, Bille J, Chang SC, da Luz Martins M, Duse A, Dzierzanowska D, Ellis D, Finquelievich J, Gould I, Gur D, Hoosen A, Lee K, Mallatova N, Mallie M, Peng NG, Petrikos G, Santiago A, Trupl J, VanDen Abeele AM, Wadula J, Zaidi M; Global Antifungal Surveillance Group.

Diagn Microbiol Infect Dis. 2010 Jun;67(2):162-71. doi: 10.1016/j.diagmicrobio.2010.01.002. Epub 2010 Mar 24.

PMID:
20338711
20.

Candida albicans and Candida glabrata clinical isolates exhibiting reduced echinocandin susceptibility.

Katiyar S, Pfaller M, Edlind T.

Antimicrob Agents Chemother. 2006 Aug;50(8):2892-4.

Supplemental Content

Support Center