Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

Utilizing the GAAA tetraloop/receptor to facilitate crystal packing and determination of the structure of a CUG RNA helix.

Coonrod LA, Lohman JR, Berglund JA.

Biochemistry. 2012 Oct 23;51(42):8330-7. doi: 10.1021/bi300829w. Epub 2012 Oct 12.

2.

The structural basis of myotonic dystrophy from the crystal structure of CUG repeats.

Mooers BH, Logue JS, Berglund JA.

Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16626-31. Epub 2005 Nov 3.

3.

Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive.

Childs-Disney JL, Hoskins J, Rzuczek SG, Thornton CA, Disney MD.

ACS Chem Biol. 2012 May 18;7(5):856-62. doi: 10.1021/cb200408a. Epub 2012 Mar 5.

4.

Cytoplasmic CUG RNA foci are insufficient to elicit key DM1 features.

Dansithong W, Wolf CM, Sarkar P, Paul S, Chiang A, Holt I, Morris GE, Branco D, Sherwood MC, Comai L, Berul CI, Reddy S.

PLoS One. 2008;3(12):e3968. doi: 10.1371/journal.pone.0003968. Epub 2008 Dec 18.

5.

Visualization of double-stranded RNAs from the myotonic dystrophy protein kinase gene and interactions with CUG-binding protein.

Michalowski S, Miller JW, Urbinati CR, Paliouras M, Swanson MS, Griffith J.

Nucleic Acids Res. 1999 Sep 1;27(17):3534-42.

6.

In vivo discovery of a peptide that prevents CUG-RNA hairpin formation and reverses RNA toxicity in myotonic dystrophy models.

García-López A, Llamusí B, Orzáez M, Pérez-Payá E, Artero RD.

Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):11866-71. doi: 10.1073/pnas.1018213108. Epub 2011 Jul 5.

7.

Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy.

Wojtkowiak-Szlachcic A, Taylor K, Stepniak-Konieczna E, Sznajder LJ, Mykowska A, Sroka J, Thornton CA, Sobczak K.

Nucleic Acids Res. 2015 Mar 31;43(6):3318-31. doi: 10.1093/nar/gkv163. Epub 2015 Mar 9.

8.

RNA interference targeting CUG repeats in a mouse model of myotonic dystrophy.

Sobczak K, Wheeler TM, Wang W, Thornton CA.

Mol Ther. 2013 Feb;21(2):380-7. doi: 10.1038/mt.2012.222. Epub 2012 Nov 27.

9.

Altered phosphorylation and intracellular distribution of a (CUG)n triplet repeat RNA-binding protein in patients with myotonic dystrophy and in myotonin protein kinase knockout mice.

Roberts R, Timchenko NA, Miller JW, Reddy S, Caskey CT, Swanson MS, Timchenko LT.

Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13221-6.

10.

Novel proteins with binding specificity for DNA CTG repeats and RNA CUG repeats: implications for myotonic dystrophy.

Timchenko LT, Timchenko NA, Caskey CT, Roberts R.

Hum Mol Genet. 1996 Jan;5(1):115-21.

PMID:
8789448
11.

NMR spectroscopy and molecular dynamics simulation of r(CCGCUGCGG)₂ reveal a dynamic UU internal loop found in myotonic dystrophy type 1.

Parkesh R, Fountain M, Disney MD.

Biochemistry. 2011 Feb 8;50(5):599-601. doi: 10.1021/bi101896j. Epub 2011 Jan 13.

12.
13.

New function for the RNA helicase p68/DDX5 as a modifier of MBNL1 activity on expanded CUG repeats.

Laurent FX, Sureau A, Klein AF, Trouslard F, Gasnier E, Furling D, Marie J.

Nucleic Acids Res. 2012 Apr;40(7):3159-71. doi: 10.1093/nar/gkr1228. Epub 2011 Dec 9.

14.

Systemic delivery of a Peptide-linked morpholino oligonucleotide neutralizes mutant RNA toxicity in a mouse model of myotonic dystrophy.

Leger AJ, Mosquea LM, Clayton NP, Wu IH, Weeden T, Nelson CA, Phillips L, Roberts E, Piepenhagen PA, Cheng SH, Wentworth BM.

Nucleic Acid Ther. 2013 Apr;23(2):109-17. doi: 10.1089/nat.2012.0404. Epub 2013 Jan 11.

PMID:
23308382
15.

Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy.

Wang GS, Kearney DL, De Biasi M, Taffet G, Cooper TA.

J Clin Invest. 2007 Oct;117(10):2802-11.

16.

Cardiac elav-type RNA-binding protein (ETR-3) binds to RNA CUG repeats expanded in myotonic dystrophy.

Lu X, Timchenko NA, Timchenko LT.

Hum Mol Genet. 1999 Jan;8(1):53-60.

PMID:
9887331
17.

DDX6 regulates sequestered nuclear CUG-expanded DMPK-mRNA in dystrophia myotonica type 1.

Pettersson OJ, Aagaard L, Andrejeva D, Thomsen R, Jensen TG, Damgaard CK.

Nucleic Acids Res. 2014 Jun;42(11):7186-200. doi: 10.1093/nar/gku352. Epub 2014 May 3.

18.

HnRNP H inhibits nuclear export of mRNA containing expanded CUG repeats and a distal branch point sequence.

Kim DH, Langlois MA, Lee KB, Riggs AD, Puymirat J, Rossi JJ.

Nucleic Acids Res. 2005 Jul 15;33(12):3866-74. Print 2005.

19.

The CTG repeat expansion size correlates with the splicing defects observed in muscles from myotonic dystrophy type 1 patients.

Botta A, Rinaldi F, Catalli C, Vergani L, Bonifazi E, Romeo V, Loro E, Viola A, Angelini C, Novelli G.

J Med Genet. 2008 Oct;45(10):639-46. doi: 10.1136/jmg.2008.058909. Epub 2008 Jul 8.

PMID:
18611984
20.

Length-dependent CTG·CAG triplet-repeat expansion in myotonic dystrophy patient-derived induced pluripotent stem cells.

Du J, Campau E, Soragni E, Jespersen C, Gottesfeld JM.

Hum Mol Genet. 2013 Dec 20;22(25):5276-87. doi: 10.1093/hmg/ddt386. Epub 2013 Aug 9.

Supplemental Content

Support Center