Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 146

1.

Mercury bioaccumulation in the aquatic plant Elodea nuttallii in the field and in microcosm: accumulation in shoots from the water might involve copper transporters.

Regier N, Larras F, Bravo AG, Ungureanu VG, Amouroux D, Cosio C.

Chemosphere. 2013 Jan;90(2):595-602. doi: 10.1016/j.chemosphere.2012.08.043. Epub 2012 Sep 25.

PMID:
23021383
2.

Copper uptake and translocation in a submerged aquatic plant Hydrilla verticillata (L.f.) Royle.

Xue PY, Li GX, Liu WJ, Yan CZ.

Chemosphere. 2010 Nov;81(9):1098-103. doi: 10.1016/j.chemosphere.2010.09.023. Epub 2010 Oct 8.

PMID:
20934737
3.

Physiological and proteomic changes suggest an important role of cell walls in the high tolerance to metals of Elodea nuttallii.

Larras F, Regier N, Planchon S, Poté J, Renaut J, Cosio C.

J Hazard Mater. 2013 Dec 15;263 Pt 2:575-83. doi: 10.1016/j.jhazmat.2013.10.016. Epub 2013 Oct 16.

PMID:
24225582
4.

Mercury bioaccumulation along food webs in temperate aquatic ecosystems colonized by aquatic macrophytes in south western France.

Gentès S, Maury-Brachet R, Guyoneaud R, Monperrus M, André JM, Davail S, Legeay A.

Ecotoxicol Environ Saf. 2013 May;91:180-7. doi: 10.1016/j.ecoenv.2013.02.001. Epub 2013 Mar 5.

PMID:
23466146
5.

Phytoremediation of mercury- and methyl mercury-contaminated sediments by water hyacinth (Eichhornia crassipes).

Chattopadhyay S, Fimmen RL, Yates BJ, Lal V, Randall P.

Int J Phytoremediation. 2012 Feb;14(2):142-61.

PMID:
22567701
6.

Elodea nuttallii exposure to mercury exposure under enhanced ultraviolet radiation: Effects on bioaccumulation, transcriptome, pigment content and oxidative stress.

Regier N, Beauvais-Flück R, Slaveykova VI, Cosio C.

Aquat Toxicol. 2016 Nov;180:218-226. doi: 10.1016/j.aquatox.2016.10.001. Epub 2016 Oct 6.

PMID:
27744139
7.

Effects of humic acids on phytoextraction of Cu and Cd from sediment by Elodea nuttallii.

Wang Q, Li Z, Cheng S, Wu Z.

Chemosphere. 2010 Jan;78(5):604-8. doi: 10.1016/j.chemosphere.2009.11.011. Epub 2009 Dec 2.

PMID:
19959204
8.

Arsenic and mercury bioaccumulation in the aquatic plant, Vallisneria neotropicalis.

Lafabrie C, Major KM, Major CS, Cebrián J.

Chemosphere. 2011 Mar;82(10):1393-400. doi: 10.1016/j.chemosphere.2010.11.070. Epub 2010 Dec 18.

PMID:
21168896
9.

Fate of cadmium in Elodea canadensis.

Fritioff A, Greger M.

Chemosphere. 2007 Feb;67(2):365-75. Epub 2006 Nov 30.

PMID:
17140632
10.

Accumulation of metals in Elodea canadensis and Elodea nuttallii: implications for plant-macroinvertebrate interactions.

Thiébaut G, Gross Y, Gierlinski P, Boiché A.

Sci Total Environ. 2010 Oct 15;408(22):5499-505. doi: 10.1016/j.scitotenv.2010.07.026. Epub 2010 Aug 30.

PMID:
20800873
11.

Uptake, translocation, and elimination in sediment-rooted macrophytes: a model-supported analysis of whole sediment test data.

Diepens NJ, Arts GH, Focks A, Koelmans AA.

Environ Sci Technol. 2014 Oct 21;48(20):12344-53. doi: 10.1021/es503121x. Epub 2014 Oct 9.

PMID:
25251785
12.

Bioaccumulation of macro- and trace elements by European frogbit (Hydrocharis morsus-ranae L.) in relation to environmental pollution.

Polechońska L, Samecka-Cymerman A.

Environ Sci Pollut Res Int. 2016 Feb;23(4):3469-80. doi: 10.1007/s11356-015-5550-z. Epub 2015 Oct 21.

PMID:
26490926
13.

Effect of Elodea nuttallii roots on bacterial communities and MMHg proportion in a Hg polluted sediment.

Regier N, Frey B, Converse B, Roden E, Grosse-Honebrink A, Bravo AG, Cosio C.

PLoS One. 2012;7(9):e45565. doi: 10.1371/journal.pone.0045565. Epub 2012 Sep 17.

14.

Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle.

Xue PY, Yan CZ.

Chemosphere. 2011 Nov;85(7):1176-81. doi: 10.1016/j.chemosphere.2011.09.051. Epub 2011 Oct 22.

PMID:
22024098
15.

Use of artificial stream mesocosms to investigate mercury uptake in the South River, Virginia, USA.

Brent RN, Berberich DA.

Arch Environ Contam Toxicol. 2014 Feb;66(2):201-12. doi: 10.1007/s00244-013-9964-7. Epub 2013 Nov 20.

PMID:
24253586
16.

Historical record of mercury contamination in sediments from the Babeni Reservoir in the Olt River, Romania.

Bravo AG, Loizeau JL, Ancey L, Ungureanu VG, Dominik J.

Environ Sci Pollut Res Int. 2009 Aug;16 Suppl 1:S66-75. doi: 10.1007/s11356-008-0057-5. Epub 2008 Oct 21.

PMID:
18936996
17.

Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.

Katagi T.

Rev Environ Contam Toxicol. 2010;204:1-132. doi: 10.1007/978-1-4419-1440-8_1. Review.

PMID:
19957234
18.

Insights into low fish mercury bioaccumulation in a mercury-contaminated reservoir, Guizhou, China.

Liu B, Yan H, Wang C, Li Q, Guédron S, Spangenberg JE, Feng X, Dominik J.

Environ Pollut. 2012 Jan;160(1):109-17. doi: 10.1016/j.envpol.2011.09.023. Epub 2011 Oct 14.

PMID:
22035933
19.

The relationships between mercury and selenium in plankton and fish from a tropical food web.

do A Kehrig H, Seixas TG, Palermo EA, Baêta AP, Castelo-Branco CW, Malm O, Moreira I.

Environ Sci Pollut Res Int. 2009 Jan;16(1):10-24. doi: 10.1007/s11356-008-0038-8. Epub 2008 Aug 27.

PMID:
18751748
20.

Mercury human exposure through fish consumption in a reservoir contaminated by a chlor-alkali plant: Babeni reservoir (Romania).

Bravo AG, Loizeau JL, Bouchet S, Richard A, Rubin JF, Ungureanu VG, Amouroux D, Dominik J.

Environ Sci Pollut Res Int. 2010 Sep;17(8):1422-32. doi: 10.1007/s11356-010-0328-9. Epub 2010 Apr 22.

PMID:
20411344

Supplemental Content

Support Center