Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Macular assessment using optical coherence tomography for glaucoma diagnosis.

Sung KR, Wollstein G, Kim NR, Na JH, Nevins JE, Kim CY, Schuman JS.

Br J Ophthalmol. 2012 Dec;96(12):1452-5. doi: 10.1136/bjophthalmol-2012-301845. Epub 2012 Sep 27. Review.

2.

The ability of macular parameters and circumpapillary retinal nerve fiber layer by three SD-OCT instruments to diagnose highly myopic glaucoma.

Akashi A, Kanamori A, Nakamura M, Fujihara M, Yamada Y, Negi A.

Invest Ophthalmol Vis Sci. 2013 Sep 5;54(9):6025-32. doi: 10.1167/iovs.13-12630.

PMID:
23908182
3.

Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography (SD-OCT) macular scans.

Kotowski J, Folio LS, Wollstein G, Ishikawa H, Ling Y, Bilonick RA, Kagemann L, Schuman JS.

Br J Ophthalmol. 2012 Nov;96(11):1420-5. doi: 10.1136/bjophthalmol-2011-301021. Epub 2012 Aug 22.

4.

[Diagnostic use of macular layer analysis by SD-OCT in primary open angle glaucoma].

Delbarre M, El Chehab H, Francoz M, Zerrouk R, Marechal M, Marill AF, Giraud JM, Maÿ F, Renard JP.

J Fr Ophtalmol. 2013 Nov;36(9):723-31. doi: 10.1016/j.jfo.2013.08.002. Epub 2013 Oct 10. French.

5.

Diagnosis of Early-Stage Glaucoma by Grid-Wise Macular Inner Retinal Layer Thickness Measurement and Effect of Compensation of Disc-Fovea Inclination.

Mayama C, Saito H, Hirasawa H, Tomidokoro A, Araie M, Iwase A, Ohkubo S, Sugiyama K, Hangai M, Yoshimura N.

Invest Ophthalmol Vis Sci. 2015 Aug;56(9):5681-90. doi: 10.1167/iovs.15-17208.

PMID:
26313303
6.

Comparative assessment for the ability of Cirrus, RTVue, and 3D-OCT to diagnose glaucoma.

Akashi A, Kanamori A, Nakamura M, Fujihara M, Yamada Y, Negi A.

Invest Ophthalmol Vis Sci. 2013 Jul 10;54(7):4478-84. doi: 10.1167/iovs.12-11268.

PMID:
23737470
7.

Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography.

Grewal DS, Tanna AP.

Curr Opin Ophthalmol. 2013 Mar;24(2):150-61. doi: 10.1097/ICU.0b013e32835d9e27. Review.

PMID:
23328662
8.

Influences of the inner retinal sublayers and analytical areas in macular scans by spectral-domain OCT on the diagnostic ability of early glaucoma.

Nakatani Y, Higashide T, Ohkubo S, Sugiyama K.

Invest Ophthalmol Vis Sci. 2014 Oct 23;55(11):7479-85. doi: 10.1167/iovs.14-15530.

PMID:
25342613
9.

Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis.

Sung KR, Kim JS, Wollstein G, Folio L, Kook MS, Schuman JS.

Br J Ophthalmol. 2011 Jul;95(7):909-14. doi: 10.1136/bjo.2010.186924. Epub 2010 Oct 28. Review.

10.

Cluster analyses of grid-pattern display in macular parameters using optical coherence tomography for glaucoma diagnosis.

Kanamori A, Naka M, Akashi A, Fujihara M, Yamada Y, Nakamura M.

Invest Ophthalmol Vis Sci. 2013 Sep 27;54(9):6401-8. doi: 10.1167/iovs.13-12805.

PMID:
23989192
11.

Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography.

Na JH, Sung KR, Baek S, Kim YJ, Durbin MK, Lee HJ, Kim HK, Sohn YH.

Invest Ophthalmol Vis Sci. 2012 Jun 20;53(7):3817-26. doi: 10.1167/iovs.11-9369.

PMID:
22562510
12.

Macular and retinal nerve fiber layer thickness: which is more helpful in the diagnosis of glaucoma?

Na JH, Sung KR, Baek S, Sun JH, Lee Y.

Invest Ophthalmol Vis Sci. 2011 Oct 11;52(11):8094-101. doi: 10.1167/iovs.11-7833.

PMID:
21911590
13.

OCT for glaucoma diagnosis, screening and detection of glaucoma progression.

Bussel II, Wollstein G, Schuman JS.

Br J Ophthalmol. 2014 Jul;98 Suppl 2:ii15-9. doi: 10.1136/bjophthalmol-2013-304326. Epub 2013 Dec 19. Review.

14.

Usefulness of macular thickness derived from spectral-domain optical coherence tomography in the detection of glaucoma progression.

Lee KS, Lee JR, Na JH, Kook MS.

Invest Ophthalmol Vis Sci. 2013 Mar 15;54(3):1941-9. doi: 10.1167/iovs.12-11160.

PMID:
23422822
15.

Combining information from 3 anatomic regions in the diagnosis of glaucoma with time-domain optical coherence tomography.

Wang M, Lu AT, Varma R, Schuman JS, Greenfield DS, Huang D; Advanced Imaging for Glaucoma Study Group.

J Glaucoma. 2014 Mar;23(3):129-35. doi: 10.1097/IJG.0b013e318264b941.

16.

Macular Diagnostic Ability in OCT for Assessing Glaucoma in High Myopia.

Hung KC, Wu PC, Poon YC, Chang HW, Lai IC, Tsai JC, Lin PW, Teng MC.

Optom Vis Sci. 2016 Feb;93(2):126-35. doi: 10.1097/OPX.0000000000000776.

PMID:
26704143
17.

Differences of Intrasession Reproducibility of Circumpapillary Total Retinal Thickness and Circumpapillary Retinal Nerve Fiber Layer Thickness Measurements Made with the RS-3000 Optical Coherence Tomograph.

Kita Y, Hollό G, Kita R, Horie D, Inoue M, Hirakata A.

PLoS One. 2015 Dec 14;10(12):e0144721. doi: 10.1371/journal.pone.0144721. eCollection 2015.

18.

Repeatability of peripapillary retinal nerve fiber layer and inner retinal thickness among two spectral domain optical coherence tomography devices.

Matlach J, Wagner M, Malzahn U, Göbel W.

Invest Ophthalmol Vis Sci. 2014 Sep 16;55(10):6536-46. doi: 10.1167/iovs.14-15072.

PMID:
25228545
19.

Macular imaging for glaucoma using spectral-domain optical coherence tomography: a review.

Wong JJ, Chen TC, Shen LQ, Pasquale LR.

Semin Ophthalmol. 2012 Sep-Nov;27(5-6):160-6. doi: 10.3109/08820538.2012.712734. Review.

PMID:
23163271
20.

Fourier domain OCT measurement of macular, macular ganglion cell complex, and peripapillary RNFL thickness in glaucomatous Chinese eyes.

Chen J, Huang H, Wang M, Sun X, Qian S.

Eur J Ophthalmol. 2012 Nov-Dec;22(6):972-9. doi: 10.5301/ejo.5000131. Epub 2012 Mar 20.

PMID:
22467590

Supplemental Content

Support Center