Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 152

1.

A new approach to determine the accuracy of morphology-elasticity relationships in continuum FE analyses of human proximal femur.

Hazrati Marangalou J, Ito K, van Rietbergen B.

J Biomech. 2012 Nov 15;45(16):2884-92. doi: 10.1016/j.jbiomech.2012.08.022. Epub 2012 Sep 25.

2.

A novel approach to estimate trabecular bone anisotropy using a database approach.

Hazrati Marangalou J, Ito K, Cataldi M, Taddei F, van Rietbergen B.

J Biomech. 2013 Sep 27;46(14):2356-62. doi: 10.1016/j.jbiomech.2013.07.042. Epub 2013 Aug 11.

3.

A novel approach to estimate trabecular bone anisotropy from stress tensors.

Hazrati Marangalou J, Ito K, van Rietbergen B.

Biomech Model Mechanobiol. 2015 Jan;14(1):39-48. doi: 10.1007/s10237-014-0584-6. Epub 2014 Apr 29.

PMID:
24777672
4.

Concept and development of an orthotropic FE model of the proximal femur.

Wirtz DC, Pandorf T, Portheine F, Radermacher K, Schiffers N, Prescher A, Weichert D, Niethard FU.

J Biomech. 2003 Feb;36(2):289-93.

PMID:
12547369
5.

Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.

Yosibash Z, Tal D, Trabelsi N.

Philos Trans A Math Phys Eng Sci. 2010 Jun 13;368(1920):2707-23. doi: 10.1098/rsta.2010.0074.

6.

Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments.

Trabelsi N, Yosibash Z.

J Biomech Eng. 2011 Jun;133(6):061001. doi: 10.1115/1.4004180.

PMID:
21744921
7.

Comparison of micro-level and continuum-level voxel models of the proximal femur.

Verhulp E, van Rietbergen B, Huiskes R.

J Biomech. 2006;39(16):2951-7. Epub 2005 Dec 15.

PMID:
16359680
8.

A comparison of enhanced continuum FE with micro FE models of human vertebral bodies.

Pahr DH, Zysset PK.

J Biomech. 2009 Mar 11;42(4):455-62. doi: 10.1016/j.jbiomech.2008.11.028. Epub 2009 Jan 19.

PMID:
19155014
9.

Constructing anisotropic finite element model of bone from computed tomography (CT).

Kazembakhshi S, Luo Y.

Biomed Mater Eng. 2014;24(6):2619-26. doi: 10.3233/BME-141078.

PMID:
25226965
10.

Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses.

Baca V, Horak Z, Mikulenka P, Dzupa V.

Med Eng Phys. 2008 Sep;30(7):924-30. doi: 10.1016/j.medengphy.2007.12.009. Epub 2008 Feb 20.

PMID:
18243761
11.
12.

A comparative study of orthotropic and isotropic bone adaptation in the femur.

Geraldes DM, Phillips AT.

Int J Numer Method Biomed Eng. 2014 Sep;30(9):873-89. doi: 10.1002/cnm.2633. Epub 2014 Apr 21.

13.

Mapping anisotropy of the proximal femur for enhanced image based finite element analysis.

Enns-Bray WS, Owoc JS, Nishiyama KK, Boyd SK.

J Biomech. 2014 Oct 17;47(13):3272-8. doi: 10.1016/j.jbiomech.2014.08.020. Epub 2014 Sep 1.

PMID:
25219361
14.

Determination of orthotropic bone elastic constants using FEA and modal analysis.

Taylor WR, Roland E, Ploeg H, Hertig D, Klabunde R, Warner MD, Hobatho MC, Rakotomanana L, Clift SE.

J Biomech. 2002 Jun;35(6):767-73.

PMID:
12020996
15.

An investigation to determine if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones.

Eberle S, Göttlinger M, Augat P.

Med Eng Phys. 2013 Jul;35(7):875-83. doi: 10.1016/j.medengphy.2012.08.022. Epub 2012 Sep 23.

PMID:
23010570
16.

Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions.

San Antonio T, Ciaccia M, Müller-Karger C, Casanova E.

Med Eng Phys. 2012 Sep;34(7):914-9. doi: 10.1016/j.medengphy.2011.10.008. Epub 2011 Nov 17.

PMID:
22100056
17.

Probabilistic finite element analysis of a craniofacial finite element model.

Berthaume MA, Dechow PC, Iriarte-Diaz J, Ross CF, Strait DS, Wang Q, Grosse IR.

J Theor Biol. 2012 May 7;300:242-53. doi: 10.1016/j.jtbi.2012.01.031. Epub 2012 Jan 27.

PMID:
22306513
18.

Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions.

Peng L, Bai J, Zeng X, Zhou Y.

Med Eng Phys. 2006 Apr;28(3):227-33. Epub 2005 Aug 1.

PMID:
16076560
19.

Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables.

Maquer G, Musy SN, Wandel J, Gross T, Zysset PK.

J Bone Miner Res. 2015 Jun;30(6):1000-8. doi: 10.1002/jbmr.2437.

20.

Morphology-elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations.

Gross T, Pahr DH, Zysset PK.

Biomech Model Mechanobiol. 2013 Aug;12(4):793-800. doi: 10.1007/s10237-012-0443-2. Epub 2012 Oct 2.

PMID:
23053593

Supplemental Content

Support Center