Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Relation between the gel structure and the mobility of tracers in globular protein gels.

Balakrishnan G, Nicolai T, Durand D.

J Colloid Interface Sci. 2012 Dec 15;388(1):293-9. doi: 10.1016/j.jcis.2012.08.032.

PMID:
23010320
2.

Particle diffusion in globular protein gels in relation to the gel structure.

Balakrishnan G, Durand D, Nicolai T.

Biomacromolecules. 2011 Feb 14;12(2):450-6. doi: 10.1021/bm101238r.

PMID:
21189043
3.

Salt-induced gelation of globular protein aggregates: structure and kinetics.

Ako K, Nicolai T, Durand D.

Biomacromolecules. 2010 Apr 12;11(4):864-71. doi: 10.1021/bm9011437.

PMID:
20297835
4.

Light-scattering study of the structure of aggregates and gels formed by heat-denatured whey protein isolate and beta-lactoglobulin at neutral pH.

Mahmoudi N, Mehalebi S, Nicolai T, Durand D, Riaublanc A.

J Agric Food Chem. 2007 Apr 18;55(8):3104-11.

PMID:
17378578
5.

Interactions and diffusion in fine-stranded β-lactoglobulin gels determined via FRAP and binding.

Schuster E, Hermansson AM, Ohgren C, Rudemo M, Lorén N.

Biophys J. 2014 Jan 7;106(1):253-62. doi: 10.1016/j.bpj.2013.11.2959.

6.

Determining the gelation temperature of β-lactoglobulin using in situ microscopic imaging.

Woo HD, Moon TW, Gunasekaran S, Ko S.

J Dairy Sci. 2013 Sep;96(9):5565-74. doi: 10.3168/jds.2013-6786.

PMID:
23871379
7.

Gelling properties of heat-denatured beta-lactoglobulin aggregates in a high-salt buffer.

Vittayanont M, Steffe JF, Flegler SL, Smith DM.

J Agric Food Chem. 2002 May 8;50(10):2987-92.

PMID:
11982430
8.

Surface-directed structure formation of β-lactoglobulin inside droplets.

Ohgren C, Loren N, Altskar A, Hermansson AM.

Biomacromolecules. 2011 Jun 13;12(6):2235-42. doi: 10.1021/bm200320c.

PMID:
21553882
9.

Fluorescence recovery after photobleaching as a probe of diffusion in starch systems.

Perry PA, Fitzgerald MA, Gilbert RG.

Biomacromolecules. 2006 Feb;7(2):521-30.

PMID:
16471925
10.

Effects of pH and salt environment on the association of beta-lactoglobulin revealed by intrinsic fluorescence studies.

Renard D, Lefebvre J, Griffin MC, Griffin WG.

Int J Biol Macromol. 1998 Feb;22(1):41-9.

PMID:
9513815
11.
13.
14.

A new multistep Ca2+-induced cold gelation process for beta-lactoglobulin.

Veerman C, Baptist H, Sagis LM, van der Linden E.

J Agric Food Chem. 2003 Jun 18;51(13):3880-5.

PMID:
12797759
15.

On the crucial importance of the pH for the formation and self-stabilization of protein microgels and strands.

Phan-Xuan T, Durand D, Nicolai T, Donato L, Schmitt C, Bovetto L.

Langmuir. 2011 Dec 20;27(24):15092-101. doi: 10.1021/la203357p.

PMID:
22054054
16.

Heat-induced gelation of globular proteins: part 3. Molecular studies on low pH beta-lactoglobulin gels.

Kavanagh GM, Clark AH, Ross-Murphy SB.

Int J Biol Macromol. 2000 Oct 10;28(1):41-50.

PMID:
11033176
17.

Fibril assemblies in aqueous whey protein mixtures.

Bolder SG, Hendrickx H, Sagis LM, van der Linden E.

J Agric Food Chem. 2006 Jun 14;54(12):4229-34.

PMID:
16756351
18.

Light scattering study of heat-denatured globular protein aggregates.

Mehalebi S, Nicolai T, Durand D.

Int J Biol Macromol. 2008 Aug 15;43(2):129-35. doi: 10.1016/j.ijbiomac.2008.04.002.

PMID:
18485470
19.

Swelling and dissolution of beta-lactoglobulin gels in alkali.

Mercadé-Prieto R, Falconer RJ, Paterson WR, Wilson DI.

Biomacromolecules. 2007 Feb;8(2):469-76.

PMID:
17243763
20.

Factors affecting rheological characteristics of fibril gels: the case of beta-lactoglobulin and alpha-lactalbumin.

Loveday SM, Rao MA, Creamer LK, Singh H.

J Food Sci. 2009 Apr;74(3):R47-55. doi: 10.1111/j.1750-3841.2009.01098.x. Review.

PMID:
19397731
Items per page

Supplemental Content

Support Center