Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 125

1.

Functional characterization of wheat copalyl diphosphate synthases sheds light on the early evolution of labdane-related diterpenoid metabolism in the cereals.

Wu Y, Zhou K, Toyomasu T, Sugawara C, Oku M, Abe S, Usui M, Mitsuhashi W, Chono M, Chandler PM, Peters RJ.

Phytochemistry. 2012 Dec;84:40-6. doi: 10.1016/j.phytochem.2012.08.022. Epub 2012 Sep 23.

2.

Functional characterization of wheat ent-kaurene(-like) synthases indicates continuing evolution of labdane-related diterpenoid metabolism in the cereals.

Zhou K, Xu M, Tiernan M, Xie Q, Toyomasu T, Sugawara C, Oku M, Usui M, Mitsuhashi W, Chono M, Chandler PM, Peters RJ.

Phytochemistry. 2012 Dec;84:47-55. doi: 10.1016/j.phytochem.2012.08.021. Epub 2012 Sep 22.

3.

Cloning and characterization of cDNAs encoding ent-copalyl diphosphate synthases in wheat: insight into the evolution of rice phytoalexin biosynthetic genes.

Toyomasu T, Kagahara T, Hirose Y, Usui M, Abe S, Okada K, Koga J, Mitsuhashi W, Yamane H.

Biosci Biotechnol Biochem. 2009 Mar 23;73(3):772-5. Epub 2009 Mar 7.

4.

Evident and latent plasticity across the rice diterpene synthase family with potential implications for the evolution of diterpenoid metabolism in the cereals.

Morrone D, Hillwig ML, Mead ME, Lowry L, Fulton DB, Peters RJ.

Biochem J. 2011 May 1;435(3):589-95. doi: 10.1042/BJ20101429.

5.

Biological functions of ent- and syn-copalyl diphosphate synthases in rice: key enzymes for the branch point of gibberellin and phytoalexin biosynthesis.

Otomo K, Kenmoku H, Oikawa H, König WA, Toshima H, Mitsuhashi W, Yamane H, Sassa T, Toyomasu T.

Plant J. 2004 Sep;39(6):886-93.

6.

Transcripts of two ent-copalyl diphosphate synthase genes differentially localize in rice plants according to their distinct biological roles.

Toyomasu T, Usui M, Sugawara C, Kanno Y, Sakai A, Takahashi H, Nakazono M, Kuroda M, Miyamoto K, Morimoto Y, Mitsuhashi W, Okada K, Yamaguchi S, Yamane H.

J Exp Bot. 2015 Jan;66(1):369-76. doi: 10.1093/jxb/eru424. Epub 2014 Oct 21.

7.

One amino acid makes the difference: the formation of ent-kaurene and 16α-hydroxy-ent-kaurane by diterpene synthases in poplar.

Irmisch S, Müller AT, Schmidt L, Günther J, Gershenzon J, Köllner TG.

BMC Plant Biol. 2015 Oct 28;15:262. doi: 10.1186/s12870-015-0647-6.

8.

Characterization and evolutionary analysis of ent-kaurene synthase like genes from the wild rice species Oryza rufipogon.

Toyomasu T, Miyamoto K, Shenton MR, Sakai A, Sugawara C, Horie K, Kawaide H, Hasegawa M, Chuba M, Mitsuhashi W, Yamane H, Kurata N, Okada K.

Biochem Biophys Res Commun. 2016 Nov 18;480(3):402-408. doi: 10.1016/j.bbrc.2016.10.062. Epub 2016 Oct 19.

PMID:
27771250
9.

Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata.

Misra RC, Garg A, Roy S, Chanotiya CS, Vasudev PG, Ghosh S.

Plant Sci. 2015 Nov;240:50-64. doi: 10.1016/j.plantsci.2015.08.016. Epub 2015 Aug 28.

PMID:
26475187
10.

The maize An2 gene is induced by Fusarium attack and encodes an ent-copalyl diphosphate synthase.

Harris LJ, Saparno A, Johnston A, Prisic S, Xu M, Allard S, Kathiresan A, Ouellet T, Peters RJ.

Plant Mol Biol. 2005 Dec;59(6):881-94.

PMID:
16307364
11.

Rice contains two disparate ent-copalyl diphosphate synthases with distinct metabolic functions.

Prisic S, Xu M, Wilderman PR, Peters RJ.

Plant Physiol. 2004 Dec;136(4):4228-36. Epub 2004 Nov 12.

12.
13.
15.

CYP701A8: a rice ent-kaurene oxidase paralog diverted to more specialized diterpenoid metabolism.

Wang Q, Hillwig ML, Wu Y, Peters RJ.

Plant Physiol. 2012 Mar;158(3):1418-25. doi: 10.1104/pp.111.187518. Epub 2012 Jan 12.

16.

Gibberellin biosynthesis in bacteria: separate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum.

Morrone D, Chambers J, Lowry L, Kim G, Anterola A, Bender K, Peters RJ.

FEBS Lett. 2009 Jan 22;583(2):475-80. doi: 10.1016/j.febslet.2008.12.052. Epub 2008 Dec 31.

17.

Novel product chemistry from mechanistic analysis of ent-copalyl diphosphate synthases from plant hormone biosynthesis.

Potter K, Criswell J, Zi J, Stubbs A, Peters RJ.

Angew Chem Int Ed Engl. 2014 Jul 7;53(28):7198-202. doi: 10.1002/anie.201402911. Epub 2014 May 23.

18.

Biosynthesis of cyclic diterpene hydrocarbons in rice cell suspensions: conversion of 9,10-syn-labda-8(17),13-dienyl diphosphate to 9beta-pimara-7,15-diene and stemar-13-ene.

Mohan RS, Yee NK, Coates RM, Ren YY, Stamenkovic P, Mendez I, West CA.

Arch Biochem Biophys. 1996 Jun 1;330(1):33-47.

PMID:
8651702
19.

Exploring diterpene metabolism in non-model species: transcriptome-enabled discovery and functional characterization of labda-7,13E-dienyl diphosphate synthase from Grindelia robusta.

Zerbe P, Rodriguez SM, Mafu S, Chiang A, Sandhu HK, O'Neil-Johnson M, Starks CM, Bohlmann J.

Plant J. 2015 Sep;83(5):783-93. doi: 10.1111/tpj.12925. Epub 2015 Jul 23.

20.

Domain loss has independently occurred multiple times in plant terpene synthase evolution.

Hillwig ML, Xu M, Toyomasu T, Tiernan MS, Wei G, Cui G, Huang L, Peters RJ.

Plant J. 2011 Dec;68(6):1051-60. doi: 10.1111/j.1365-313X.2011.04756.x. Epub 2011 Oct 17.

Supplemental Content

Support Center