Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85

1.

Identification and evaluation of twin-arginine translocase inhibitors.

Vasil ML, Tomaras AP, Pritchard AE.

Antimicrob Agents Chemother. 2012 Dec;56(12):6223-34. doi: 10.1128/AAC.01575-12. Epub 2012 Sep 24.

2.

Development and application of a cellular, gain-of-signal, bioluminescent reporter screen for inhibitors of type II secretion in Pseudomonas aeruginosa and Burkholderia pseudomallei.

Moir DT, Di M, Wong E, Moore RA, Schweizer HP, Woods DE, Bowlin TL.

J Biomol Screen. 2011 Aug;16(7):694-705. doi: 10.1177/1087057111408605. Epub 2011 May 20.

3.

Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis.

Ochsner UA, Snyder A, Vasil AI, Vasil ML.

Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8312-7. Epub 2002 May 28.

4.

Tat pathway-mediated translocation of the sec pathway substrate protein MexA, an inner membrane component of the MexAB-OprM xenobiotic extrusion pump in Pseudomonas aeruginosa.

Yoneyama H, Akiba K, Hori H, Ando T, Nakae T.

Antimicrob Agents Chemother. 2010 Apr;54(4):1492-7. doi: 10.1128/AAC.01495-09. Epub 2010 Jan 25.

5.
6.

Identification of functional Tat signal sequences in Mycobacterium tuberculosis proteins.

McDonough JA, McCann JR, Tekippe EM, Silverman JS, Rigel NW, Braunstein M.

J Bacteriol. 2008 Oct;190(19):6428-38. doi: 10.1128/JB.00749-08. Epub 2008 Jul 25.

7.

High Throughput Screen for Escherichia coli Twin Arginine Translocation (Tat) Inhibitors.

Bageshwar UK, VerPlank L, Baker D, Dong W, Hamsanathan S, Whitaker N, Sacchettini JC, Musser SM.

PLoS One. 2016 Feb 22;11(2):e0149659. doi: 10.1371/journal.pone.0149659. eCollection 2016.

8.

Involvement of the twin-arginine translocation system in protein secretion via the type II pathway.

Voulhoux R, Ball G, Ize B, Vasil ML, Lazdunski A, Wu LF, Filloux A.

EMBO J. 2001 Dec 3;20(23):6735-41.

9.

The twin-arginine translocation pathway of Mycobacterium smegmatis is functional and required for the export of mycobacterial beta-lactamases.

McDonough JA, Hacker KE, Flores AR, Pavelka MS Jr, Braunstein M.

J Bacteriol. 2005 Nov;187(22):7667-79.

10.

Tat pathway-mediated translocation of the Sec pathway substrate OprM, an outer membrane subunit of the resistance nodulation division xenobiotic extrusion pumps, in Pseudomonas Aeruginosa.

Akiba K, Ando T, Isogai E, Nakae T, Yoneyama H.

Chemotherapy. 2013;59(2):129-37. doi: 10.1159/000353894. Epub 2013 Sep 18.

PMID:
24051688
11.

High-level over-expression, purification, and crystallization of a novel phospholipase C/sphingomyelinase from Pseudomonas aeruginosa.

Truan D, Vasil A, Stonehouse M, Vasil ML, Pohl E.

Protein Expr Purif. 2013 Jul;90(1):40-6. doi: 10.1016/j.pep.2012.11.005. Epub 2012 Nov 29. Erratum in: Protein Expr Purif. 2015 Apr;108:115.

12.

A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis.

Barker AP, Vasil AI, Filloux A, Ball G, Wilderman PJ, Vasil ML.

Mol Microbiol. 2004 Aug;53(4):1089-98.

13.

PlcR1 and PlcR2 are putative calcium-binding proteins required for secretion of the hemolytic phospholipase C of Pseudomonas aeruginosa.

Cota-Gomez A, Vasil AI, Kadurugamuwa J, Beveridge TJ, Schweizer HP, Vasil ML.

Infect Immun. 1997 Jul;65(7):2904-13.

14.

The type II secretion system (Xcp) of Pseudomonas putida is active and involved in the secretion of phosphatases.

Putker F, Tommassen-van Boxtel R, Stork M, Rodríguez-Herva JJ, Koster M, Tommassen J.

Environ Microbiol. 2013 Oct;15(10):2658-71. doi: 10.1111/1462-2920.12115. Epub 2013 Mar 26.

PMID:
23530902
15.

GbdR regulates Pseudomonas aeruginosa plcH and pchP transcription in response to choline catabolites.

Wargo MJ, Ho TC, Gross MJ, Whittaker LA, Hogan DA.

Infect Immun. 2009 Mar;77(3):1103-11. doi: 10.1128/IAI.01008-08. Epub 2008 Dec 22.

16.

Cloning of a phosphate-regulated hemolysin gene (phospholipase C) from Pseudomonas aeruginosa.

Vasil ML, Berka RM, Gray GL, Nakai H.

J Bacteriol. 1982 Oct;152(1):431-40.

17.

Cooperation between LepA and PlcH contributes to the in vivo virulence and growth of Pseudomonas aeruginosa in mice.

Kida Y, Shimizu T, Kuwano K.

Infect Immun. 2011 Jan;79(1):211-9. doi: 10.1128/IAI.01053-10. Epub 2010 Nov 1.

18.

[Expression of hemolytic phospholipase C from Pseudomonas aeruginosa in Escherichia coli].

Zhao J, Zhang L, Gu Z, Ding Z, Shi G.

Wei Sheng Wu Xue Bao. 2013 Mar 4;53(3):259-68. Chinese.

PMID:
23678572
19.

Contribution of the Twin Arginine Translocation system to the exoproteome of Pseudomonas aeruginosa.

Ball G, Antelmann H, Imbert PR, Gimenez MR, Voulhoux R, Ize B.

Sci Rep. 2016 Jun 9;6:27675. doi: 10.1038/srep27675.

20.

Tetradecyltrimethylammonium inhibits Pseudomonas aeruginosa hemolytic phospholipase C induced by choline.

Liffourrena AS, Massimelli MJ, Forrellad MA, Lisa AT, Domenech CE, Lucchesi GI.

Curr Microbiol. 2007 Dec;55(6):530-6. Epub 2007 Sep 25.

PMID:
17899264

Supplemental Content

Support Center