Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Role of antisite disorder on preamorphization swelling in titanate pyrochlores.

Li YH, Uberuaga BP, Jiang C, Choudhury S, Valdez JA, Patel MK, Won J, Wang YQ, Tang M, Safarik DJ, Byler DD, McClellan KJ, Usov IO, Hartmann T, Baldinozzi G, Sickafus KE.

Phys Rev Lett. 2012 May 11;108(19):195504. Epub 2012 May 8.

PMID:
23003057
2.

Atomic scale simulations of pyrochlore oxides with a tight-binding variable-charge model: implications for radiation tolerance.

Sattonnay G, Tétot R.

J Phys Condens Matter. 2014 Feb 5;26(5):055403. doi: 10.1088/0953-8984/26/5/055403. Epub 2014 Jan 20.

PMID:
24444514
3.

Defect processes in orthorhombic LnBaCo2O5.5 double perovskites.

Seymour ID, Chroneos A, Kilner JA, Grimes RW.

Phys Chem Chem Phys. 2011 Sep 7;13(33):15305-10. doi: 10.1039/c1cp21471c. Epub 2011 Jul 18.

PMID:
21769361
4.

In situ observation of antisite defect formation during crystal growth.

Kramer MJ, Mendelev MI, Napolitano RE.

Phys Rev Lett. 2010 Dec 10;105(24):245501. Epub 2010 Dec 7.

PMID:
21231532
5.

Study of antisite defects in hydrothermally prepared LiFePO₄ by in situ X-ray diffraction.

Chen J, Graetz J.

ACS Appl Mater Interfaces. 2011 May;3(5):1380-4. doi: 10.1021/am200141a. Epub 2011 May 2.

PMID:
21526798
6.

First-Principles Study of Antisite Defect Configurations in ZnGa2O4:Cr Persistent Phosphors.

De Vos A, Lejaeghere K, Vanpoucke DE, Joos JJ, Smet PF, Hemelsoet K.

Inorg Chem. 2016 Mar 7;55(5):2402-12. doi: 10.1021/acs.inorgchem.5b02805. Epub 2016 Feb 11.

PMID:
26866779
7.

Insights into dynamic processes of cations in pyrochlores and other complex oxides.

Uberuaga BP, Perriot R.

Phys Chem Chem Phys. 2015 Oct 7;17(37):24215-23. doi: 10.1039/c5cp03372a. Epub 2015 Sep 1.

PMID:
26325256
8.

Investigation of Antisite Defect Formation and Chemical Expansion in LiNiPO4 by in Situ Neutron Diffraction.

Jacas Biendicho J, Hsiao KC, Hull S, West AR.

Inorg Chem. 2017 Mar 20;56(6):3657-3662. doi: 10.1021/acs.inorgchem.7b00109. Epub 2017 Mar 6.

PMID:
28263582
9.

Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation.

Lian J, Helean KB, Kennedy BJ, Wang LM, Navrotsky A, Ewing RC.

J Phys Chem B. 2006 Feb 9;110(5):2343-50.

PMID:
16471823
10.

Opposite correlations between cation disordering and amorphization resistance in spinels versus pyrochlores.

Uberuaga BP, Tang M, Jiang C, Valdez JA, Smith R, Wang Y, Sickafus KE.

Nat Commun. 2015 Oct 29;6:8750. doi: 10.1038/ncomms9750.

11.

Antisite disorder driven spontaneous exchange bias effect in La(2-x)Sr(x) CoMnO₆ (0  ⩽  x  ⩽  1).

Krishna Murthy J, Chandrasekhar KD, Wu HC, Yang HD, Lin JY, Venimadhav A.

J Phys Condens Matter. 2016 Mar 2;28(8):086003. doi: 10.1088/0953-8984/28/8/086003. Epub 2016 Jan 29.

PMID:
26823459
12.

O vacancy formation in (Pr/Gd)BaCo2O5.5 and the role of antisite defects.

Omotayo Akande S, Chroneos A, Schwingenschlögl U.

Phys Chem Chem Phys. 2017 May 10;19(18):11455-11459. doi: 10.1039/c7cp01942d.

PMID:
28425534
13.

Theoretical investigation of thermodynamic stability and mobility of the intrinsic point defects in Ti3AC2 (A = Si, Al).

Wang J, Liu B, Wang J, Zhou Y.

Phys Chem Chem Phys. 2015 Apr 14;17(14):8927-34. doi: 10.1039/c5cp00062a. Epub 2015 Mar 9.

PMID:
25749398
14.

Synergistic effects of intrinsic cation disorder and electron-deficient substitution on ion and electron conductivity in La1-xSrxCo0.5Mn0.5O3-δ (x = 0, 0.5, and 0.75).

Meng J, Yuan N, Liu X, Yao C, Liang Q, Zhou D, Meng F, Meng J.

Inorg Chem. 2015 Mar 16;54(6):2820-9. doi: 10.1021/ic502989c. Epub 2015 Mar 2.

PMID:
25733063
15.

X-ray photoelectron spectroscopy study of disordering in Gd2(Ti1-xZrx)2O7 pyrochlores.

Chen J, Lian J, Wang LM, Ewing RC, Wang RG, Pan W.

Phys Rev Lett. 2002 Mar 11;88(10):105901. Epub 2002 Feb 20.

PMID:
11909374
16.

Electronic excitation induced amorphization in titanate pyrochlores: an ab initio molecular dynamics study.

Xiao HY, Weber WJ, Zhang Y, Zu XT, Li S.

Sci Rep. 2015 Feb 9;5:8265. doi: 10.1038/srep08265.

17.

Observation of antisite domain boundaries in Cu2ZnSnS4 by atomic-resolution transmission electron microscopy.

Kattan NA, Griffiths IJ, Cherns D, Fermín DJ.

Nanoscale. 2016 Aug 14;8(30):14369-73. doi: 10.1039/c6nr04185j. Epub 2016 Jul 13.

PMID:
27405278
18.

A new perspective on the process of intrinsic point defects in α-Al₂O₃.

Xiang X, Zhang G, Wang X, Tang T, Shi Y.

Phys Chem Chem Phys. 2015 Nov 21;17(43):29134-41. doi: 10.1039/c5cp04867b.

PMID:
26464326
19.

The origin of p-type conductivity in ZnM2O4 (M = Co, Rh, Ir) spinels.

Amini MN, Dixit H, Saniz R, Lamoen D, Partoens B.

Phys Chem Chem Phys. 2014 Feb 14;16(6):2588-96. doi: 10.1039/c3cp53926a.

PMID:
24382577
20.

Comparison of vacancy and antisite defects in GaAs and InGaAs through hybrid functionals.

Komsa HP, Pasquarello A.

J Phys Condens Matter. 2012 Feb 1;24(4):045801. doi: 10.1088/0953-8984/24/4/045801. Epub 2012 Jan 3.

PMID:
22214854

Supplemental Content

Support Center