Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 183

1.

Crystallization during bending of a Pd-based metallic glass detected by x-ray microscopy.

Yavari AR, Georgarakis K, Antonowicz J, Stoica M, Nishiyama N, Vaughan G, Chen M, Pons M.

Phys Rev Lett. 2012 Aug 24;109(8):085501.

PMID:
23002757
2.

Localized crystallization in shear bands of a metallic glass.

Yan Z, Song K, Hu Y, Dai F, Chu Z, Eckert J.

Sci Rep. 2016 Jan 13;6:19358. doi: 10.1038/srep19358.

3.

Localized shear deformation and softening of bulk metallic glass: stress or temperature driven?

Ketov SV, Louzguine-Luzgin DV.

Sci Rep. 2013 Oct 8;3:2798. doi: 10.1038/srep02798.

4.

Shear-accelerated crystallization in a supercooled atomic liquid.

Shao Z, Singer JP, Liu Y, Liu Z, Li H, Gopinadhan M, O'Hern CS, Schroers J, Osuji CO.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):020301.

PMID:
25768445
5.

Electromagnetic vibration process for producing bulk metallic glasses.

Tamura T, Amiya K, Rachmat RS, Mizutani Y, Miwa K.

Nat Mater. 2005 Apr;4(4):289-92.

PMID:
15750599
6.
7.

The shear band controlled deformation in metallic glass: a perspective from fracture.

Yang GN, Shao Y, Yao KF.

Sci Rep. 2016 Feb 22;6:21852. doi: 10.1038/srep21852.

8.

Ductile crystalline-amorphous nanolaminates.

Wang Y, Li J, Hamza AV, Barbee TW Jr.

Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11155-60.

9.

Tensile ductility and necking of metallic glass.

Guo H, Yan PF, Wang YB, Tan J, Zhang ZF, Sui ML, Ma E.

Nat Mater. 2007 Oct;6(10):735-9.

PMID:
17704779
10.

Nanoscale size effects in crystallization of metallic glass nanorods.

Sohn S, Jung Y, Xie Y, Osuji C, Schroers J, Cha JJ.

Nat Commun. 2015 Sep 1;6:8157. doi: 10.1038/ncomms9157.

11.

Electron Correlation Microscopy: A New Technique for Studying Local Atom Dynamics Applied to a Supercooled Liquid.

He L, Zhang P, Besser MF, Kramer MJ, Voyles PM.

Microsc Microanal. 2015 Aug;21(4):1026-33. doi: 10.1017/S1431927615000641.

PMID:
26036263
12.

Formation of monatomic metallic glasses through ultrafast liquid quenching.

Zhong L, Wang J, Sheng H, Zhang Z, Mao SX.

Nature. 2014 Aug 14;512(7513):177-80. doi: 10.1038/nature13617.

PMID:
25119235
13.

Low-density to high-density transition in Ce75Al23Si2 metallic glass.

Zeng QS, Fang YZ, Lou HB, Gong Y, Wang XD, Yang K, Li AG, Yan S, Lathe C, Wu FM, Yu XH, Jiang JZ.

J Phys Condens Matter. 2010 Sep 22;22(37):375404. doi: 10.1088/0953-8984/22/37/375404.

PMID:
21403196
14.

Deformation behavior, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses.

Liu L, Qiu CL, Chen Q, Chan KC, Zhang SM.

J Biomed Mater Res A. 2008 Jul;86(1):160-9.

PMID:
17957719
15.

Rejuvenation of metallic glasses by non-affine thermal strain.

Ketov SV, Sun YH, Nachum S, Lu Z, Checchi A, Beraldin AR, Bai HY, Wang WH, Louzguine-Luzgin DV, Carpenter MA, Greer AL.

Nature. 2015 Aug 13;524(7564):200-3. doi: 10.1038/nature14674.

PMID:
26268190
16.

Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses.

Lan S, Ren Y, Wei XY, Wang B, Gilbert EP, Shibayama T, Watanabe S, Ohnuma M, Wang XL.

Nat Commun. 2017 Mar 17;8:14679. doi: 10.1038/ncomms14679.

PMID:
28303882
17.

Real-time, high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass.

Wang CC, Mao YW, Shan ZW, Dao M, Li J, Sun J, Ma E, Suresh S.

Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19725-30. doi: 10.1073/pnas.1320235110.

18.

Microstructure and mechanical properties of the NiNbZrTiAl amorphous alloys with 10 and 25 at.% Nb content.

Czeppe T, Ochin P, Sypień A, Major L.

J Microsc. 2010 Mar;237(3):320-4. doi: 10.1111/j.1365-2818.2009.03251.x.

19.
20.

Vitrification and crystallization of metallic liquid under pressures.

Wang L, Peng C, Wang Y, Zhang Y.

J Phys Condens Matter. 2006 Aug 16;18(32):7559-68. doi: 10.1088/0953-8984/18/32/005.

PMID:
21690869

Supplemental Content

Support Center