Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 139

1.

The SWI/SNF KlSnf2 subunit controls the glucose signaling pathway to coordinate glycolysis and glucose transport in Kluyveromyces lactis.

Cotton P, Soulard A, Wésolowski-Louvel M, Lemaire M.

Eukaryot Cell. 2012 Nov;11(11):1382-90. doi: 10.1128/EC.00210-12. Epub 2012 Sep 21.

2.

Glycolysis controls plasma membrane glucose sensors to promote glucose signaling in yeasts.

Cairey-Remonnay A, Deffaud J, Wésolowski-Louvel M, Lemaire M, Soulard A.

Mol Cell Biol. 2015 Feb;35(4):747-57. doi: 10.1128/MCB.00515-14. Epub 2014 Dec 15.

3.

Characterization of KlGRR1 and SMS1 genes, two new elements of the glucose signaling pathway of Kluyveromyces lactis.

Hnatova M, Wésolowski-Louvel M, Dieppois G, Deffaud J, Lemaire M.

Eukaryot Cell. 2008 Aug;7(8):1299-308. doi: 10.1128/EC.00454-07. Epub 2008 Jun 13.

4.
5.

Connection between the Rag4 glucose sensor and the KlRgt1 repressor in Kluyveromyces lactis.

Rolland S, Hnatova M, Lemaire M, Leal-Sanchez J, Wésolowski-Louvel M.

Genetics. 2006 Oct;174(2):617-26. Epub 2006 Jun 18.

6.

Sck1 activator coordinates glucose transport and glycolysis and is controlled by Rag8 casein kinase I in Kluyveromyces lactis.

Neil H, Hnatova M, Wésolowski-Louvel M, Rycovska A, Lemaire M.

Mol Microbiol. 2007 Mar;63(5):1537-48.

7.

The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis.

Prior C, Mamessier P, Fukuhara H, Chen XJ, Wesolowski-Louvel M.

Mol Cell Biol. 1993 Jul;13(7):3882-9.

8.

Evidence that Swi/Snf directly represses transcription in S. cerevisiae.

Martens JA, Winston F.

Genes Dev. 2002 Sep 1;16(17):2231-6.

9.

RAG4 gene encodes a glucose sensor in Kluyveromyces lactis.

Betina S, Goffrini P, Ferrero I, Wésolowski-Louvel M.

Genetics. 2001 Jun;158(2):541-8.

11.

Activator-dependent recruitment of SWI/SNF and INO80 during INO1 activation.

Ford J, Odeyale O, Shen CH.

Biochem Biophys Res Commun. 2008 Sep 5;373(4):602-6. doi: 10.1016/j.bbrc.2008.06.079. Epub 2008 Jun 30.

12.

Glucose uptake in Kluyveromyces lactis: role of the HGT1 gene in glucose transport.

Billard P, Ménart S, Blaisonneau J, Bolotin-Fukuhara M, Fukuhara H, Wésolowski-Louvel M.

J Bacteriol. 1996 Oct;178(20):5860-6.

13.

Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast.

Ansari SA, Paul E, Sommer S, Lieleg C, He Q, Daly AZ, Rode KA, Barber WT, Ellis LC, LaPorta E, Orzechowski AM, Taylor E, Reeb T, Wong J, Korber P, Morse RH.

J Biol Chem. 2014 May 23;289(21):14981-95. doi: 10.1074/jbc.M113.529354. Epub 2014 Apr 11. Erratum in: J Biol Chem. 2016 May 6;291(19):9938.

14.
15.
16.

The yeast protein complex containing cdc68 and pob3 mediates core-promoter repression through the cdc68 N-terminal domain.

Evans DR, Brewster NK, Xu Q, Rowley A, Altheim BA, Johnston GC, Singer RA.

Genetics. 1998 Dec;150(4):1393-405.

17.

How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.

Polish JA, Kim JH, Johnston M.

Genetics. 2005 Feb;169(2):583-94. Epub 2004 Oct 16.

18.

Oxygen-dependent transcriptional regulator Hap1p limits glucose uptake by repressing the expression of the major glucose transporter gene RAG1 in Kluyveromyces lactis.

Bao WG, Guiard B, Fang ZA, Donnini C, Gervais M, Passos FM, Ferrero I, Fukuhara H, Bolotin-Fukuhara M.

Eukaryot Cell. 2008 Nov;7(11):1895-905. doi: 10.1128/EC.00018-08. Epub 2008 Sep 19.

19.
20.

Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae.

Kaniak A, Xue Z, Macool D, Kim JH, Johnston M.

Eukaryot Cell. 2004 Feb;3(1):221-31.

Supplemental Content

Support Center