Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

N-terminal protein processing: a comparative proteogenomic analysis.

Bonissone S, Gupta N, Romine M, Bradshaw RA, Pevzner PA.

Mol Cell Proteomics. 2013 Jan;12(1):14-28. doi: 10.1074/mcp.M112.019075. Epub 2012 Sep 23.

2.

Characterization of N-terminal protein modifications in Pseudomonas aeruginosa PA14.

Ouidir T, Jarnier F, Cosette P, Jouenne T, Hardouin J.

J Proteomics. 2015 Jan 30;114:214-25. doi: 10.1016/j.jprot.2014.11.006. Epub 2014 Nov 21.

PMID:
25464366
3.

Sequence determinants of cytosolic N-terminal protein processing.

Flinta C, Persson B, J├Ârnvall H, von Heijne G.

Eur J Biochem. 1986 Jan 2;154(1):193-6.

4.

Protein N-terminal processing: substrate specificity of Escherichia coli and human methionine aminopeptidases.

Xiao Q, Zhang F, Nacev BA, Liu JO, Pei D.

Biochemistry. 2010 Jul 6;49(26):5588-99. doi: 10.1021/bi1005464.

5.

Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey.

Falb M, Aivaliotis M, Garcia-Rizo C, Bisle B, Tebbe A, Klein C, Konstantinidis K, Siedler F, Pfeiffer F, Oesterhelt D.

J Mol Biol. 2006 Oct 6;362(5):915-24. Epub 2006 Aug 3.

PMID:
16950390
6.

Identification and analysis of the acetylated status of poplar proteins reveals analogous N-terminal protein processing mechanisms with other eukaryotes.

Liu CC, Zhu HY, Dong XM, Ning DL, Wang HX, Li WH, Yang CP, Wang BC.

PLoS One. 2013;8(3):e58681. doi: 10.1371/journal.pone.0058681. Epub 2013 Mar 11.

8.

Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase.

Van Damme P, Evjenth R, Foyn H, Demeyer K, De Bock PJ, Lillehaug JR, Vandekerckhove J, Arnesen T, Gevaert K.

Mol Cell Proteomics. 2011 May;10(5):M110.004580. doi: 10.1074/mcp.M110.004580. Epub 2011 Mar 7.

9.

N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases.

Van Damme P, Hole K, Gevaert K, Arnesen T.

Proteomics. 2015 Jul;15(14):2436-46. doi: 10.1002/pmic.201400575. Epub 2015 Jun 5.

PMID:
25886145
10.
11.

Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans.

Arnesen T, Van Damme P, Polevoda B, Helsens K, Evjenth R, Colaert N, Varhaug JE, Vandekerckhove J, Lillehaug JR, Sherman F, Gevaert K.

Proc Natl Acad Sci U S A. 2009 May 19;106(20):8157-62. doi: 10.1073/pnas.0901931106. Epub 2009 May 6.

12.

Amino-terminal extension present in the methionine aminopeptidase type 1c of Mycobacterium tuberculosis is indispensible for its activity.

Kanudia P, Mittal M, Kumaran S, Chakraborti PK.

BMC Biochem. 2011 Jul 5;12:35. doi: 10.1186/1471-2091-12-35.

13.

Amino acid residue penultimate to the amino-terminal gly residue strongly affects two cotranslational protein modifications, N-myristoylation and N-acetylation.

Utsumi T, Sato M, Nakano K, Takemura D, Iwata H, Ishisaka R.

J Biol Chem. 2001 Mar 30;276(13):10505-13. Epub 2000 Dec 20.

14.

The proteomics of N-terminal methionine cleavage.

Frottin F, Martinez A, Peynot P, Mitra S, Holz RC, Giglione C, Meinnel T.

Mol Cell Proteomics. 2006 Dec;5(12):2336-49. Epub 2006 Sep 8.

15.

A novel human NatA Nalpha-terminal acetyltransferase complex: hNaa16p-hNaa10p (hNat2-hArd1).

Arnesen T, Gromyko D, Kagabo D, Betts MJ, Starheim KK, Varhaug JE, Anderson D, Lillehaug JR.

BMC Biochem. 2009 May 29;10:15. doi: 10.1186/1471-2091-10-15.

16.

The amino acid sequence of human chorionic gonadotropin. The alpha subunit and beta subunit.

Morgan FJ, Birken S, Canfield RE.

J Biol Chem. 1975 Jul 10;250(13):5247-58.

17.

N-terminal acetylation of cellular proteins creates specific degradation signals.

Hwang CS, Shemorry A, Varshavsky A.

Science. 2010 Feb 19;327(5968):973-7. doi: 10.1126/science.1183147. Epub 2010 Jan 28.

18.

Primary and tertiary structure of the principal human adenylate kinase.

Von Zabern I, Wittmann-Liebold B, Untucht-Grau R, Schirmer RH, Pai EF.

Eur J Biochem. 1976 Sep;68(1):281-90.

19.

Generation of Artificial N-end Rule Substrate Proteins In Vivo and In Vitro.

Naumann C, Mot AC, Dissmeyer N.

Methods Mol Biol. 2016;1450:55-83. doi: 10.1007/978-1-4939-3759-2_6.

PMID:
27424746
20.

Supplemental Content

Support Center