Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85

1.

Host cell Golgi anti-apoptotic protein (GAAP) and growth of Chlamydia pneumoniae.

Markkula E, Hulkkonen J, Penttilä T, Puolakkainen M.

Microb Pathog. 2013 Jan;54:46-53. doi: 10.1016/j.micpath.2012.09.004. Epub 2012 Sep 21.

PMID:
23000903
2.

Flotillin-1 (Reggie-2) contributes to Chlamydia pneumoniae growth and is associated with bacterial inclusion.

Korhonen JT, Puolakkainen M, Häivälä R, Penttilä T, Haveri A, Markkula E, Lahesmaa R.

Infect Immun. 2012 Mar;80(3):1072-8. doi: 10.1128/IAI.05528-11. Epub 2012 Jan 3.

3.

Characterization and intracellular localization of putative Chlamydia pneumoniae effector proteins.

Müller N, Sattelmacher F, Lugert R, Gross U.

Med Microbiol Immunol. 2008 Dec;197(4):387-96. doi: 10.1007/s00430-008-0097-y. Epub 2008 May 1.

4.

Chlamydia pneumoniae infection in polarized epithelial cell lines.

Törmäkangas L, Markkula E, Lounatmaa K, Puolakkainen M.

Infect Immun. 2010 Jun;78(6):2714-22. doi: 10.1128/IAI.01456-09. Epub 2010 Mar 29.

5.

Chlamydia Outer Protein (Cop) B from Chlamydia pneumoniae possesses characteristic features of a type III secretion (T3S) translocator protein.

Bulir DC, Waltho DA, Stone CB, Liang S, Chiang CK, Mwawasi KA, Nelson JC, Zhang SW, Mihalco SP, Scinocca ZC, Mahony JB.

BMC Microbiol. 2015 Aug 14;15:163. doi: 10.1186/s12866-015-0498-1.

6.

Host metabolism promotes growth of Chlamydia pneumoniae in a low oxygen environment.

Szaszák M, Shima K, Käding N, Hannus M, Solbach W, Rupp J.

Int J Med Microbiol. 2013 Jul;303(5):239-46. doi: 10.1016/j.ijmm.2013.03.005. Epub 2013 Apr 6.

PMID:
23665044
7.

Microarray analysis of a Chlamydia pneumoniae-infected human epithelial cell line by use of gene ontology hierarchy.

Alvesalo J, Greco D, Leinonen M, Raitila T, Vuorela P, Auvinen P.

J Infect Dis. 2008 Jan 1;197(1):156-62. doi: 10.1086/524142.

PMID:
18171299
8.

Up-regulation of host cell genes during interferon-gamma-induced persistent Chlamydia pneumoniae infection in HL cells.

Mannonen L, Nikula T, Haveri A, Reinikainen A, Vuola JM, Lahesmaa R, Puolakkainen M.

J Infect Dis. 2007 Jan 15;195(2):212-9. Epub 2006 Dec 13.

PMID:
17191166
9.

Growth of Chlamydia pneumoniae Is Enhanced in Cells with Impaired Mitochondrial Function.

Käding N, Kaufhold I, Müller C, Szaszák M, Shima K, Weinmaier T, Lomas R, Conesa A, Schmitt-Kopplin P, Rattei T, Rupp J.

Front Cell Infect Microbiol. 2017 Dec 5;7:499. doi: 10.3389/fcimb.2017.00499. eCollection 2017.

10.

Epithelial cells infected with Chlamydophila pneumoniae (Chlamydia pneumoniae) are resistant to apoptosis.

Rajalingam K, Al-Younes H, Müller A, Meyer TF, Szczepek AJ, Rudel T.

Infect Immun. 2001 Dec;69(12):7880-8.

11.

Interaction between components of the type III secretion system of Chlamydiaceae.

Slepenkin A, de la Maza LM, Peterson EM.

J Bacteriol. 2005 Jan;187(2):473-9.

12.

Chlamydia pneumoniae entry into epithelial cells by clathrin-independent endocytosis.

Korhonen JT, Puolakkainen M, Haveri A, Tammiruusu A, Sarvas M, Lahesmaa R.

Microb Pathog. 2012 Mar;52(3):157-64. doi: 10.1016/j.micpath.2011.12.002. Epub 2011 Dec 21.

PMID:
22203235
13.

The essential role of the CopN protein in Chlamydia pneumoniae intracellular growth.

Huang J, Lesser CF, Lory S.

Nature. 2008 Nov 6;456(7218):112-5. doi: 10.1038/nature07355. Epub 2008 Oct 1.

14.

Chlamydia pneumoniae inclusion membrane protein Cpn0585 interacts with multiple Rab GTPases.

Cortes C, Rzomp KA, Tvinnereim A, Scidmore MA, Wizel B.

Infect Immun. 2007 Dec;75(12):5586-96. Epub 2007 Oct 1.

15.

Comparative genomes of Chlamydia pneumoniae and C. trachomatis.

Kalman S, Mitchell W, Marathe R, Lammel C, Fan J, Hyman RW, Olinger L, Grimwood J, Davis RW, Stephens RS.

Nat Genet. 1999 Apr;21(4):385-9.

PMID:
10192388
16.

Chlamydia pneumoniae growth inhibition in cells by the steroid receptor antagonist RU486 (mifepristone).

Yamaguchi H, Kamiya S, Uruma T, Osaki T, Taguchi H, Hanawa T, Fukuda M, Kawakami H, Goto H, Friedman H, Yamamoto Y.

Antimicrob Agents Chemother. 2008 Jun;52(6):1991-8. doi: 10.1128/AAC.01416-07. Epub 2008 Mar 17.

17.

Low iron availability modulates the course of Chlamydia pneumoniae infection.

Al-Younes HM, Rudel T, Brinkmann V, Szczepek AJ, Meyer TF.

Cell Microbiol. 2001 Jun;3(6):427-37.

PMID:
11422085
18.

Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2.

de Barsy M, Jamet A, Filopon D, Nicolas C, Laloux G, Rual JF, Muller A, Twizere JC, Nkengfac B, Vandenhaute J, Hill DE, Salcedo SP, Gorvel JP, Letesson JJ, De Bolle X.

Cell Microbiol. 2011 Jul;13(7):1044-58. doi: 10.1111/j.1462-5822.2011.01601.x. Epub 2011 May 30.

19.

A protein secreted by the respiratory pathogen Chlamydia pneumoniae impairs IL-17 signalling via interaction with human Act1.

Wolf K, Plano GV, Fields KA.

Cell Microbiol. 2009 May;11(5):769-79. doi: 10.1111/j.1462-5822.2009.01290.x. Epub 2009 Jan 21.

20.

Analysis of Chlamydia pneumoniae growth in cells by reverse transcription-PCR targeted to bacterial gene transcripts.

Haranaga S, Ikejima H, Yamaguchi H, Friedman H, Yamamoto Y.

Clin Diagn Lab Immunol. 2002 Mar;9(2):313-9.

Supplemental Content

Support Center