Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 153

1.

Pt5Gd as a highly active and stable catalyst for oxygen electroreduction.

Escudero-Escribano M, Verdaguer-Casadevall A, Malacrida P, Grønbjerg U, Knudsen BP, Jepsen AK, Rossmeisl J, Stephens IE, Chorkendorff I.

J Am Chem Soc. 2012 Oct 10;134(40):16476-9. doi: 10.1021/ja306348d. Epub 2012 Sep 26.

PMID:
22998588
2.

Towards the elucidation of the high oxygen electroreduction activity of PtxY: surface science and electrochemical studies of Y/Pt(111).

Johansson TP, Ulrikkeholm ET, Hernandez-Fernandez P, Escudero-Escribano M, Malacrida P, Stephens IE, Chorkendorff I.

Phys Chem Chem Phys. 2014 Jul 21;16(27):13718-25. doi: 10.1039/c4cp00319e. Epub 2014 Apr 11.

PMID:
24728264
3.

Electrochemical performance of annealed cobalt-benzotriazole/CNTs catalysts towards the oxygen reduction reaction.

Morozan A, Jégou P, Jousselme B, Palacin S.

Phys Chem Chem Phys. 2011 Dec 28;13(48):21600-7. doi: 10.1039/c1cp23199e. Epub 2011 Nov 9.

PMID:
22068682
4.

Mixed-metal pt monolayer electrocatalysts for enhanced oxygen reduction kinetics.

Zhang J, Vukmirovic MB, Sasaki K, Nilekar AU, Mavrikakis M, Adzic RR.

J Am Chem Soc. 2005 Sep 14;127(36):12480-1.

PMID:
16144382
5.

Synthesis of conductive rutile-phased Nb0.06Ti0.94O2 and its supported Pt electrocatalysts (Pt/Nb0.06Ti0.94O2) for the oxygen reduction reaction.

Wang YJ, Wilkinson DP, Zhang J.

Dalton Trans. 2012 Jan 28;41(4):1187-94. doi: 10.1039/c1dt11711d. Epub 2011 Nov 25.

PMID:
22119794
6.

Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.

Hu Y, Zhang H, Wu P, Zhang H, Zhou B, Cai C.

Phys Chem Chem Phys. 2011 Mar 7;13(9):4083-94. doi: 10.1039/c0cp01998d. Epub 2011 Jan 13.

PMID:
21229152
7.

Activity and stability of pyrolyzed iron ethylenediaminetetraacetic acid as cathode catalyst in microbial fuel cells.

Wang L, Liang P, Zhang J, Huang X.

Bioresour Technol. 2011 Apr;102(8):5093-7. doi: 10.1016/j.biortech.2011.01.025. Epub 2011 Jan 22.

PMID:
21324675
8.

Improvement of cathode performance on Pt-CeO(x) by optimization of electrochemical pretreatment condition for PEFC application.

Fugane K, Mori T, Ou DR, Yan P, Ye F, Yoshikawa H, Drennan J.

Langmuir. 2012 Dec 4;28(48):16692-700. doi: 10.1021/la302912r. Epub 2012 Nov 21.

PMID:
23110562
9.

Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces.

Wang C, Chi M, Li D, Strmcnik D, van der Vliet D, Wang G, Komanicky V, Chang KC, Paulikas AP, Tripkovic D, Pearson J, More KL, Markovic NM, Stamenkovic VR.

J Am Chem Soc. 2011 Sep 14;133(36):14396-403. doi: 10.1021/ja2047655. Epub 2011 Aug 22.

PMID:
21770417
10.

A methodology for investigating new nonprecious metal catalysts for PEM fuel cells.

Susac D, Sode A, Zhu L, Wong PC, Teo M, Bizzotto D, Mitchell KA, Parsons RR, Campbell SA.

J Phys Chem B. 2006 Jun 8;110(22):10762-70.

PMID:
16771324
11.

Yttrium oxide/gadolinium oxide-modified platinum nanoparticles as cathodes for the oxygen reduction reaction.

Luo Y, Habrioux A, Calvillo L, Granozzi G, Alonso-Vante N.

Chemphyschem. 2014 Jul 21;15(10):2136-44. doi: 10.1002/cphc.201400042. Epub 2014 May 12.

PMID:
24819164
12.

Density functional theory study of oxygen reduction reaction on Pt/Pd3Al(111) alloy electrocatalyst.

Xiao BB, Jiang XB, Jiang Q.

Phys Chem Chem Phys. 2016 May 25;18(21):14234-43. doi: 10.1039/c6cp01066k.

PMID:
27167779
14.

Pt@Pd(x)Cu(y)/C core-shell electrocatalysts for oxygen reduction reaction in fuel cells.

Cochell T, Manthiram A.

Langmuir. 2012 Jan 17;28(2):1579-87. doi: 10.1021/la202610z. Epub 2012 Jan 5.

PMID:
22149212
15.

First principles computational study on the electrochemical stability of Pt-Co nanocatalysts.

Noh SH, Seo MH, Seo JK, Fischer P, Han B.

Nanoscale. 2013 Sep 21;5(18):8625-33. doi: 10.1039/c3nr02611f.

PMID:
23897215
16.

Relating structural aspects of bimetallic Pt(3)Cr(1)/C nanoparticles to their electrocatalytic activity, stability, and selectivity in the oxygen reduction reaction.

Taufany F, Pan CJ, Chou HL, Rick J, Chen YS, Liu DG, Lee JF, Tang MT, Hwang BJ.

Chemistry. 2011 Sep 12;17(38):10724-35. doi: 10.1002/chem.201100556. Epub 2011 Aug 11.

PMID:
21837730
17.

Scalable Nanoporous (Pt1-xNix)3Al Intermetallic Compounds as Highly Active and Stable Catalysts for Oxygen Electroreduction.

Han GF, Gu L, Lang XY, Xiao BB, Yang ZZ, Wen Z, Jiang Q.

ACS Appl Mater Interfaces. 2016 Dec 7;8(48):32910-32917. Epub 2016 Nov 22.

PMID:
27934169
18.

Tunable properties of PtxFe1-x electrocatalysts and their catalytic activity towards the oxygen reduction reaction.

Lai FJ, Chou HL, Sarma LS, Wang DY, Lin YC, Lee JF, Hwang BJ, Chen CC.

Nanoscale. 2010 Apr;2(4):573-81. doi: 10.1039/b9nr00239a. Epub 2010 Jan 26.

PMID:
20644761
19.

Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying.

Stephens IE, Bondarenko AS, Perez-Alonso FJ, Calle-Vallejo F, Bech L, Johansson TP, Jepsen AK, Frydendal R, Knudsen BP, Rossmeisl J, Chorkendorff I.

J Am Chem Soc. 2011 Apr 13;133(14):5485-91. doi: 10.1021/ja111690g. Epub 2011 Mar 18.

PMID:
21417329
20.

Beneficial compressive strain for oxygen reduction reaction on Pt (111) surface.

Kattel S, Wang G.

J Chem Phys. 2014 Sep 28;141(12):124713. doi: 10.1063/1.4896604.

PMID:
25273467

Supplemental Content

Support Center