Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

Introduction of a high-throughput double-stent animal model for the evaluation of biodegradable vascular stents.

Borinski M, Flege C, Schreiber F, Krott N, Gries T, Liehn E, Blindt R, Marx N, Vogt F.

J Biomed Mater Res B Appl Biomater. 2012 Nov;100(8):2023-8. doi: 10.1002/jbm.b.32810. Epub 2012 Sep 21.

PMID:
22997102
2.

Improved biocompatibility of poly(lactic-co-glycolic acid) orv and poly-L-lactic acid blended with nanoparticulate amorphous calcium phosphate in vascular stent applications.

Zheng X, Wang Y, Lan Z, Lyu Y, Feng G, Zhang Y, Tagusari S, Kislauskis E, Robich MP, McCarthy S, Sellke FW, Laham R, Jiang X, Gu WW, Wu T.

J Biomed Nanotechnol. 2014 Jun;10(6):900-10.

PMID:
24749387
3.

A novel biodegradable stent applicable for use in congenital heart disease: bench testing and feasibility results in a rabbit model.

Veeram Reddy SR, Welch TR, Wang J, Bernstein F, Richardson JA, Forbess JM, Nugent AW.

Catheter Cardiovasc Interv. 2014 Feb 15;83(3):448-56. doi: 10.1002/ccd.24936. Epub 2013 Aug 8.

PMID:
23592519
4.

Histopathological comparison of biodegradable polymer and permanent polymer based sirolimus eluting stents in a porcine model of coronary stent implantation.

Koppara T, Joner M, Bayer G, Steigerwald K, Diener T, Wittchow E.

Thromb Haemost. 2012 Jun;107(6):1161-71. doi: 10.1160/TH12-01-0043. Epub 2012 Apr 26.

PMID:
22535188
5.

Drug-eluting biodegradable poly-D/L-lactic acid vascular stents: an experimental pilot study.

Uurto I, Mikkonen J, Parkkinen J, Keski-Nisula L, Nevalainen T, Kellomäki M, Törmälä P, Salenius JP.

J Endovasc Ther. 2005 Jun;12(3):371-9.

PMID:
15943514
6.

Tissue response to poly(L-lactic acid)-based blend with phospholipid polymer for biodegradable cardiovascular stents.

Kim HI, Ishihara K, Lee S, Seo JH, Kim HY, Suh D, Kim MU, Konno T, Takai M, Seo JS.

Biomaterials. 2011 Mar;32(9):2241-7. doi: 10.1016/j.biomaterials.2010.11.067. Epub 2010 Dec 24.

PMID:
21185597
7.

Experimental study of poly-L-lactic acid biodegradable stents in normal canine bile ducts.

Yamamoto K, Yoshioka T, Furuichi K, Sakaguchi H, Anai H, Tanaka T, Morimoto K, Uchida H, Kichikawa K.

Cardiovasc Intervent Radiol. 2011 Jun;34(3):601-8. doi: 10.1007/s00270-010-0045-2. Epub 2010 Dec 10.

PMID:
21153415
8.

Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.

Bobel AC, Petisco S, Sarasua JR, Wang W, McHugh PE.

Cardiovasc Eng Technol. 2015 Dec;6(4):519-32. doi: 10.1007/s13239-015-0235-9. Epub 2015 Jul 17.

PMID:
26577483
9.

A novel design biodegradable stent for use in congenital heart disease: mid-term results in rabbit descending aorta.

Veeram Reddy SR, Welch TR, Wang J, Richardson JA, Forbess JM, Riegel M, Nugent AW.

Catheter Cardiovasc Interv. 2015 Mar;85(4):629-39. doi: 10.1002/ccd.25648. Epub 2014 Sep 3.

PMID:
25157439
10.

Study of biodegradable and self-expandable PLLA helical biliary stent in vivo and in vitro.

Meng B, Wang J, Zhu N, Meng QY, Cui FZ, Xu YX.

J Mater Sci Mater Med. 2006 Jul;17(7):611-7.

PMID:
16770545
11.

Iliac anastomotic stenting with a sirolimus-eluting biodegradable poly-L-lactide stent: a preliminary study after 6 weeks.

Bünger CM, Grabow N, Kröger C, Lorenzen B, Hauenstein K, Goosmann M, Schmitz KP, Kreutzer HJ, Lootz D, Ince H, Nienaber CA, Klar E, Schareck W, Sternberg K.

J Endovasc Ther. 2006 Oct;13(5):630-9.

PMID:
17042669
12.

Computational analysis of the radial mechanical performance of PLLA coronary artery stents.

Pauck RG, Reddy BD.

Med Eng Phys. 2015 Jan;37(1):7-12. doi: 10.1016/j.medengphy.2014.09.014. Epub 2014 Oct 19.

PMID:
25456397
13.
14.

Sirolimus-eluting biodegradable poly-L-lactide stent for peripheral vascular application: a preliminary study in porcine carotid arteries.

Bünger CM, Grabow N, Sternberg K, Kröger C, Ketner L, Schmitz KP, Kreutzer HJ, Ince H, Nienaber CA, Klar E, Schareck W.

J Surg Res. 2007 May 1;139(1):77-82. Epub 2007 Feb 8.

PMID:
17292417
15.

Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans.

Tamai H, Igaki K, Kyo E, Kosuga K, Kawashima A, Matsui S, Komori H, Tsuji T, Motohara S, Uehata H.

Circulation. 2000 Jul 25;102(4):399-404.

16.

New tubular bioabsorbable knitted airway stent: biocompatibility and mechanical strength.

Saito Y, Minami K, Kobayashi M, Nakao Y, Omiya H, Imamura H, Sakaida N, Okamura A.

J Thorac Cardiovasc Surg. 2002 Jan;123(1):161-7.

17.

Biocompatibility and implantation properties of 2 differently braided, biodegradable, self-reinforced polylactic acid urethral stents: an experimental study in the rabbit.

Isotalo T, Nuutinen JP, Vaajanen A, Martikainen PM, Laurila M, Törmälä P, Talja M, Tammela TL.

J Urol. 2005 Dec;174(6):2401-4.

PMID:
16280856
18.

Long-term assessment of a novel biodegradable paclitaxel-eluting coronary polylactide stent.

Vogt F, Stein A, Rettemeier G, Krott N, Hoffmann R, vom Dahl J, Bosserhoff AK, Michaeli W, Hanrath P, Weber C, Blindt R.

Eur Heart J. 2004 Aug;25(15):1330-40.

PMID:
15288161
19.

A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials.

Pierson D, Edick J, Tauscher A, Pokorney E, Bowen P, Gelbaugh J, Stinson J, Getty H, Lee CH, Drelich J, Goldman J.

J Biomed Mater Res B Appl Biomater. 2012 Jan;100(1):58-67. doi: 10.1002/jbm.b.31922. Epub 2011 Sep 8.

PMID:
21905215
20.

Long-Term (>10 Years) clinical outcomes of first-in-human biodegradable poly-l-lactic acid coronary stents: Igaki-Tamai stents.

Nishio S, Kosuga K, Igaki K, Okada M, Kyo E, Tsuji T, Takeuchi E, Inuzuka Y, Takeda S, Hata T, Takeuchi Y, Kawada Y, Harita T, Seki J, Akamatsu S, Hasegawa S, Bruining N, Brugaletta S, de Winter S, Muramatsu T, Onuma Y, Serruys PW, Ikeguchi S.

Circulation. 2012 May 15;125(19):2343-53. doi: 10.1161/CIRCULATIONAHA.110.000901. Epub 2012 Apr 16.

Supplemental Content

Support Center