Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 298

1.

ZnO, SiO2, and SrO doping in resorbable tricalcium phosphates: Influence on strength degradation, mechanical properties, and in vitro bone-cell material interactions.

Bandyopadhyay A, Petersen J, Fielding G, Banerjee S, Bose S.

J Biomed Mater Res B Appl Biomater. 2012 Nov;100(8):2203-12. doi: 10.1002/jbm.b.32789. Epub 2012 Sep 21.

PMID:
22997062
2.

Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of beta-TCP ceramics.

Banerjee SS, Tarafder S, Davies NM, Bandyopadhyay A, Bose S.

Acta Biomater. 2010 Oct;6(10):4167-74. doi: 10.1016/j.actbio.2010.05.012. Epub 2010 May 20.

PMID:
20493283
3.

Understanding in vivo response and mechanical property variation in MgO, SrO and SiO₂ doped β-TCP.

Bose S, Tarafder S, Banerjee SS, Davies NM, Bandyopadhyay A.

Bone. 2011 Jun 1;48(6):1282-90. doi: 10.1016/j.bone.2011.03.685. Epub 2011 Mar 16.

4.

Influence of TiO2 and Ag2O addition on tricalcium phosphate ceramics.

Seeley Z, Bandyopadhyay A, Bose S.

J Biomed Mater Res A. 2007 Jul;82(1):113-21.

PMID:
17269142
5.

Synthesis and characterization of tricalcium phosphate with Zn and Mg based dopants.

Xue W, Dahlquist K, Banerjee A, Bandyopadhyay A, Bose S.

J Mater Sci Mater Med. 2008 Jul;19(7):2669-77. doi: 10.1007/s10856-008-3395-4. Epub 2008 Feb 13.

PMID:
18270806
6.

Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds.

Fielding GA, Bandyopadhyay A, Bose S.

Dent Mater. 2012 Feb;28(2):113-22. doi: 10.1016/j.dental.2011.09.010. Epub 2011 Nov 1.

7.

SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.

Tarafder S, Dernell WS, Bandyopadhyay A, Bose S.

J Biomed Mater Res B Appl Biomater. 2015 Apr;103(3):679-90. doi: 10.1002/jbm.b.33239. Epub 2014 Jul 8.

PMID:
25045131
8.

Development of beta-tricalcium phosphate/sol-gel derived bioactive glass composites: physical, mechanical, and in vitro biological evaluations.

Hesaraki S, Safari M, Shokrgozar MA.

J Biomed Mater Res B Appl Biomater. 2009 Oct;91(1):459-69. doi: 10.1002/jbm.b.31422.

PMID:
19507141
9.

Magnesia-doped HA/beta-TCP ceramics and evaluation of their biocompatibility.

Ryu HS, Hong KS, Lee JK, Kim DJ, Lee JH, Chang BS, Lee DH, Lee CK, Chung SS.

Biomaterials. 2004 Feb;25(3):393-401.

PMID:
14585687
10.

Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass.

Cai S, Xu GH, Yu XZ, Zhang WJ, Xiao ZY, Yao KD.

J Mater Sci Mater Med. 2009 Jan;20(1):351-8. doi: 10.1007/s10856-008-3591-2. Epub 2008 Sep 21.

PMID:
18807260
11.

Nano SiO2 and MgO improve the properties of porous β-TCP scaffolds via advanced manufacturing technology.

Gao C, Wei P, Feng P, Xiao T, Shuai C, Peng S.

Int J Mol Sci. 2015 Mar 25;16(4):6818-30. doi: 10.3390/ijms16046818.

12.

CaO--P2O5--Na2O-based sintering additives for hydroxyapatite (HAp) ceramics.

Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A.

Biomaterials. 2004 May;25(12):2331-9.

PMID:
14741598
13.

Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets.

Sader MS, Legeros RZ, Soares GA.

J Mater Sci Mater Med. 2009 Feb;20(2):521-7. doi: 10.1007/s10856-008-3610-3. Epub 2008 Nov 6.

PMID:
18987959
14.

Mechanical properties and in vitro cellular behavior of zinc-containing nano-bioactive glass doped biphasic calcium phosphate bone substitutes.

Badr-Mohammadi MR, Hesaraki S, Zamanian A.

J Mater Sci Mater Med. 2014 Jan;25(1):185-97. doi: 10.1007/s10856-013-5062-7. Epub 2013 Oct 8.

PMID:
24101184
15.

Influence of oxide-based sintering additives on densification and mechanical behavior of tricalcium phosphate (TCP).

Bhatt HA, Kalita SJ.

J Mater Sci Mater Med. 2007 May;18(5):883-93. Epub 2007 Jan 9.

PMID:
17211718
16.

Effects of Iron on Physical and Mechanical Properties, and Osteoblast Cell Interaction in β-Tricalcium Phosphate.

Vahabzadeh S, Bose S.

Ann Biomed Eng. 2017 Mar;45(3):819-828. doi: 10.1007/s10439-016-1724-1. Epub 2016 Nov 28.

PMID:
27896489
17.

Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering.

Feng P, Wei P, Shuai C, Peng S.

PLoS One. 2014 Jan 31;9(1):e87755. doi: 10.1371/journal.pone.0087755. eCollection 2014.

18.

Material characterization and in vivo behavior of silicon substituted alpha-tricalcium phosphate cement.

Camiré CL, Saint-Jean SJ, Mochales C, Nevsten P, Wang JS, Lidgren L, McCarthy I, Ginebra MP.

J Biomed Mater Res B Appl Biomater. 2006 Feb;76(2):424-31.

PMID:
16184531
20.

In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.

Ni S, Chang J.

J Biomater Appl. 2009 Aug;24(2):139-58. doi: 10.1177/0885328208094745. Epub 2008 Sep 18.

PMID:
18801892

Supplemental Content

Support Center