Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

The first catalytic synthesis of an acrylate from CO2 and an alkene-a rational approach.

Lejkowski ML, Lindner R, Kageyama T, Bódizs GÉ, Plessow PN, Müller IB, Schäfer A, Rominger F, Hofmann P, Futter C, Schunk SA, Limbach M.

Chemistry. 2012 Oct 29;18(44):14017-25. doi: 10.1002/chem.201201757. Epub 2012 Sep 20.

PMID:
22996190
2.

Nickel-catalyzed direct carboxylation of olefins with CO2 : one-pot synthesis of α,β-unsaturated carboxylic acid salts.

Huguet N, Jevtovikj I, Gordillo A, Lejkowski ML, Lindner R, Bru M, Khalimon AY, Rominger F, Schunk SA, Hofmann P, Limbach M.

Chemistry. 2014 Dec 15;20(51):16858-62. doi: 10.1002/chem.201405528. Epub 2014 Oct 30.

PMID:
25359188
3.

Catalytic formation of acrylate from carbon dioxide and ethene.

Hendriksen C, Pidko EA, Yang G, Schäffner B, Vogt D.

Chemistry. 2014 Sep 15;20(38):12037-40. doi: 10.1002/chem.201404082. Epub 2014 Aug 12.

PMID:
25116123
4.

Ruthenium-catalysed alkoxycarbonylation of alkenes with carbon dioxide.

Wu L, Liu Q, Fleischer I, Jackstell R, Beller M.

Nat Commun. 2014;5:3091. doi: 10.1038/ncomms4091.

PMID:
24518431
5.

Acrylate formation from CO2 and ethylene: catalysis with palladium and mechanistic insight.

Stieber SC, Huguet N, Kageyama T, Jevtovikj I, Ariyananda P, Gordillo A, Schunk SA, Rominger F, Hofmann P, Limbach M.

Chem Commun (Camb). 2015 Jul 11;51(54):10907-9. doi: 10.1039/c5cc01932j.

PMID:
26060842
6.

A key step in the formation of acrylic acid from CO2 and ethylene: the transformation of a nickelalactone into a nickel-acrylate complex.

Fischer R, Langer J, Malassa A, Walther D, Görls H, Vaughan G.

Chem Commun (Camb). 2006 Jun 21;(23):2510-2. Epub 2006 May 9.

PMID:
16758032
7.

Effect of sodium cation on metallacycle β-hydride elimination in CO2-ethylene coupling to acrylates.

Jin D, Williard PG, Hazari N, Bernskoetter WH.

Chemistry. 2014 Mar 10;20(11):3205-11. doi: 10.1002/chem.201304196. Epub 2014 Feb 12.

PMID:
24519890
8.
9.

Industrial Ziegler-type hydrogenation catalysts made from Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 and AlEt3: evidence for nanoclusters and sub-nanocluster or larger Ziegler-nanocluster based catalysis.

Alley WM, Hamdemir IK, Wang Q, Frenkel AI, Li L, Yang JC, Menard LD, Nuzzo RG, Özkar S, Yih KH, Johnson KA, Finke RG.

Langmuir. 2011 May 17;27(10):6279-94. doi: 10.1021/la200053f. Epub 2011 Apr 11.

PMID:
21480617
10.

Nickel-catalyzed synthesis of 1,3,5-trisubstituted hydantoins from acrylates and isocyanates.

Miura T, Mikano Y, Murakami M.

Org Lett. 2011 Jul 15;13(14):3560-3. doi: 10.1021/ol200957y. Epub 2011 Jun 14.

PMID:
21671608
11.

A catalytic tethering strategy: simple aldehydes catalyze intermolecular alkene hydroaminations.

MacDonald MJ, Schipper DJ, Ng PJ, Moran J, Beauchemin AM.

J Am Chem Soc. 2011 Dec 21;133(50):20100-3. doi: 10.1021/ja208867g. Epub 2011 Nov 23.

PMID:
22098595
12.

[Catalytic application of synthesizing n-butyl acrylate by a new type nanometer complex heteropoly acid catalyst H3PW12O40/SiO2].

Zhou LQ, Liu SZ, Sun JT.

Guang Pu Xue Yu Guang Pu Fen Xi. 2004 Oct;24(10):1217-20. Chinese.

PMID:
15760024
13.

Evidence for spontaneous release of acrylates from a transition-metal complex upon coupling ethene or propene with a carboxylic moiety or CO(2).

Aresta M, Pastore C, Giannoccaro P, Kovács G, Dibenedetto A, Pápai I.

Chemistry. 2007;13(32):9028-34.

PMID:
17696187
14.

Highly active and efficient catalysts for alkoxycarbonylation of alkenes.

Dong K, Fang X, Gülak S, Franke R, Spannenberg A, Neumann H, Jackstell R, Beller M.

Nat Commun. 2017 Jan 25;8:14117. doi: 10.1038/ncomms14117.

15.

Sn-free Ni-catalyzed reductive coupling of glycosyl bromides with activated alkenes.

Gong H, Andrews RS, Zuccarello JL, Lee SJ, Gagné MR.

Org Lett. 2009 Feb 19;11(4):879-82. doi: 10.1021/ol8028737.

PMID:
19170565
16.

Efficient catalytic decomposition of CO2 to CO and O2 over Pd/ mixed-conducting oxide catalyst in an oxygen-permeable membrane reactor.

Jin W, Zhang C, Chang X, Fan Y, Xing W, Xu N.

Environ Sci Technol. 2008 Apr 15;42(8):3064-8.

PMID:
18497167
17.

Catalytic asymmetric synthesis of a tertiary benzylic carbon center via phenol-directed alkene hydrogenation.

Caille S, Crockett R, Ranganathan K, Wang X, Woo JC, Walker SD.

J Org Chem. 2011 Jul 1;76(13):5198-206. doi: 10.1021/jo200941r. Epub 2011 Jun 9.

PMID:
21630712
18.

Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design.

Madhavan N, Jones CW, Weck M.

Acc Chem Res. 2008 Sep;41(9):1153-65. doi: 10.1021/ar800081y.

PMID:
18793027
19.

Alkene synthesis through transition metal-catalyzed cross-coupling of N-tosylhydrazones.

Zhang Y, Wang J.

Top Curr Chem. 2012;327:239-69. doi: 10.1007/128_2012_322.

PMID:
22547357
20.

Preparation of Ni-based metal monolithic catalysts and a study of their performance in methane reforming with CO2.

Wang K, Li X, Ji S, Huang B, Li C.

ChemSusChem. 2008;1(6):527-33. doi: 10.1002/cssc.200700078.

PMID:
18702151

Supplemental Content

Support Center