Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 72

1.

Imaging epigenetic regulation by histone deacetylases in the brain using PET/MRI with ¹⁸F-FAHA.

Yeh HH, Tian M, Hinz R, Young D, Shavrin A, Mukhapadhyay U, Flores LG, Balatoni J, Soghomonyan S, Jeong HJ, Pal A, Uthamanthil R, Jackson JN, Nishii R, Mizuma H, Onoe H, Kagawa S, Higashi T, Fukumitsu N, Alauddin M, Tong W, Herholz K, Gelovani JG.

Neuroimage. 2013 Jan 1;64:630-9. doi: 10.1016/j.neuroimage.2012.09.019.

2.

Evaluation of 6-([(18)F]fluoroacetamido)-1-hexanoicanilide for PET imaging of histone deacetylase in the baboon brain.

Reid AE, Hooker J, Shumay E, Logan J, Shea C, Kim SW, Collins S, Xu Y, Volkow N, Fowler JS.

Nucl Med Biol. 2009 Apr;36(3):247-58. doi: 10.1016/j.nucmedbio.2008.12.005.

3.

Novel Histone Deacetylase Class IIa Selective Substrate Radiotracers for PET Imaging of Epigenetic Regulation in the Brain.

Bonomi R, Mukhopadhyay U, Shavrin A, Yeh HH, Majhi A, Dewage SW, Najjar A, Lu X, Cisneros GA, Tong WP, Alauddin MM, Liu RS, Mangner TJ, Turkman N, Gelovani JG.

PLoS One. 2015 Aug 5;10(8):e0133512. doi: 10.1371/journal.pone.0133512.

4.

Radionuclide labeling and evaluation of candidate radioligands for PET imaging of histone deacetylase in the brain.

Seo YJ, Muench L, Reid A, Chen J, Kang Y, Hooker JM, Volkow ND, Fowler JS, Kim SW.

Bioorg Med Chem Lett. 2013 Dec 15;23(24):6700-5. doi: 10.1016/j.bmcl.2013.10.038.

5.

Targeting histone deacetylase in lung cancer for early diagnosis: (18)F-FAHA PET/CT imaging of NNK-treated A/J mice model.

Tang W, Kuruvilla SA, Galitovskiy V, Pan ML, Grando SA, Mukherjee J.

Am J Nucl Med Mol Imaging. 2014 Jun 7;4(4):324-32.

6.

In vivo PET imaging of histone deacetylases by 18F-suberoylanilide hydroxamic acid (18F-SAHA).

Hendricks JA, Keliher EJ, Marinelli B, Reiner T, Weissleder R, Mazitschek R.

J Med Chem. 2011 Aug 11;54(15):5576-82. doi: 10.1021/jm200620f.

7.

PET imaging demonstrates histone deacetylase target engagement and clarifies brain penetrance of known and novel small molecule inhibitors in rat.

Schroeder FA, Wang C, Van de Bittner GC, Neelamegam R, Takakura WR, Karunakaran A, Wey HY, Reis SA, Gale J, Zhang YL, Holson EB, Haggarty SJ, Hooker JM.

ACS Chem Neurosci. 2014 Oct 15;5(10):1055-62. doi: 10.1021/cn500162j.

8.

Visualizing epigenetics: current advances and advantages in HDAC PET imaging techniques.

Wang C, Schroeder FA, Hooker JM.

Neuroscience. 2014 Apr 4;264:186-97. doi: 10.1016/j.neuroscience.2013.09.018. Review.

10.

Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study.

Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Loidl W, Broinger G, Stoiber F, Foglman I, Langsteger W.

Eur J Nucl Med Mol Imaging. 2008 Oct;35(10):1766-74. doi: 10.1007/s00259-008-0788-z.

PMID:
18465129
11.

Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas.

Rachinger W, Goetz C, Pöpperl G, Gildehaus FJ, Kreth FW, Holtmannspötter M, Herms J, Koch W, Tatsch K, Tonn JC.

Neurosurgery. 2005 Sep;57(3):505-11; discussion 505-11.

PMID:
16145529
12.

Recent advances in histone deacetylase targeted cancer therapy.

Hoshino I, Matsubara H.

Surg Today. 2010 Sep;40(9):809-15. doi: 10.1007/s00595-010-4300-6. Review.

PMID:
20740342
13.

Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia.

Bai G, Wei D, Zou S, Ren K, Dubner R.

Mol Pain. 2010 Sep 7;6:51. doi: 10.1186/1744-8069-6-51.

14.

Preparation and evaluation of ethyl [(18)F]fluoroacetate as a proradiotracer of [(18)F]fluoroacetate for the measurement of glial metabolism by PET.

Mori T, Sun LQ, Kobayashi M, Kiyono Y, Okazawa H, Furukawa T, Kawashima H, Welch MJ, Fujibayashi Y.

Nucl Med Biol. 2009 Feb;36(2):155-62. doi: 10.1016/j.nucmedbio.2008.11.006.

PMID:
19217527
15.

Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas.

Lucio-Eterovic AK, Cortez MA, Valera ET, Motta FJ, Queiroz RG, Machado HR, Carlotti CG Jr, Neder L, Scrideli CA, Tone LG.

BMC Cancer. 2008 Aug 19;8:243. doi: 10.1186/1471-2407-8-243.

16.

Clinical significance of ¹⁸F-α-methyl tyrosine PET/CT for the detection of bone marrow invasion in patients with oral squamous cell carcinoma: comparison with ¹⁸F-FDG PET/CT and MRI.

Kim M, Higuchi T, Arisaka Y, Achmad A, Tokue A, Tominaga H, Miyashita G, Miyazaki H, Negishi A, Yokoo S, Tsushima Y.

Ann Nucl Med. 2013 Jun;27(5):423-30. doi: 10.1007/s12149-013-0701-0.

PMID:
23436243
17.

Whole-body magnetic resonance imaging and positron emission tomography-computed tomography in oncology.

Schmidt GP, Kramer H, Reiser MF, Glaser C.

Top Magn Reson Imaging. 2007 Jun;18(3):193-202. Review.

PMID:
17762383
18.

[18F]FHPG positron emission tomography for detection of herpes simplex virus (HSV) in experimental HSV encephalitis.

Buursma AR, de Vries EF, Garssen J, Kegler D, van Waarde A, Schirm J, Hospers GA, Mulder NH, Vaalburg W, Klein HC.

J Virol. 2005 Jun;79(12):7721-7.

19.

Pharmacokinetics, metabolism, biodistribution, radiation dosimetry, and toxicology of (18)F-fluoroacetate ((18)F-FACE) in non-human primates.

Nishii R, Tong W, Wendt R 3rd, Soghomonyan S, Mukhopadhyay U, Balatoni J, Mawlawi O, Bidaut L, Tinkey P, Borne A, Alauddin M, Gonzalez-Lepera C, Yang B, Gelovani JG.

Mol Imaging Biol. 2012 Apr;14(2):213-24. doi: 10.1007/s11307-011-0485-3.

20.

Optimizing positron emission tomography image acquisition protocols in integrated positron emission tomography/magnetic resonance imaging.

Hartung-Knemeyer V, Beiderwellen KJ, Buchbender C, Kuehl H, Lauenstein TC, Bockisch A, Poeppel TD.

Invest Radiol. 2013 May;48(5):290-4. doi: 10.1097/RLI.0b013e3182823695.

PMID:
23399811
Items per page

Supplemental Content

Support Center