Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 181

1.

Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA.

Park SH, Park DS, Shin JW, Kang YG, Kim HK, Yoon TR, Shin JW.

J Mater Sci Mater Med. 2012 Nov;23(11):2671-8. doi: 10.1007/s10856-012-4738-8. Epub 2012 Sep 19.

PMID:
22990617
2.

Stimulation of healing within a rabbit calvarial defect by a PCL/PLGA scaffold blended with TCP using solid freeform fabrication technology.

Shim JH, Moon TS, Yun MJ, Jeon YC, Jeong CM, Cho DW, Huh JB.

J Mater Sci Mater Med. 2012 Dec;23(12):2993-3002. doi: 10.1007/s10856-012-4761-9. Epub 2012 Sep 8.

PMID:
22960800
3.

The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering.

Baker SC, Rohman G, Southgate J, Cameron NR.

Biomaterials. 2009 Mar;30(7):1321-8. doi: 10.1016/j.biomaterials.2008.11.033. Epub 2008 Dec 16.

PMID:
19091399
4.

Fabrication of blended polycaprolactone/poly(lactic-co-glycolic acid)/β-tricalcium phosphate thin membrane using solid freeform fabrication technology for guided bone regeneration.

Shim JH, Huh JB, Park JY, Jeon YC, Kang SS, Kim JY, Rhie JW, Cho DW.

Tissue Eng Part A. 2013 Feb;19(3-4):317-28. doi: 10.1089/ten.TEA.2011.0730. Epub 2012 Oct 4.

5.

Poly(ε-caprolactone) and poly(D,L-lactic acid-co-glycolic acid) scaffolds used in bone tissue engineering prepared by melt compression-particulate leaching method.

Barbanti SH, Santos AR Jr, Zavaglia CA, Duek EA.

J Mater Sci Mater Med. 2011 Oct;22(10):2377-85. doi: 10.1007/s10856-011-4398-0. Epub 2011 Jul 21.

PMID:
21833608
6.

[Surface modification of biodegradable polymer/TCP scaffolds and related research].

Ma X, Hu Y, Wu X, Yan Y, Xiong Z, Lu R, Wang J, Li D, Xu X.

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2008 Jun;25(3):571-7. Chinese.

PMID:
18693433
7.

Bone-Healing Capacity of PCL/PLGA/Duck Beak Scaffold in Critical Bone Defects in a Rabbit Model.

Lee JY, Son SJ, Son JS, Kang SS, Choi SH.

Biomed Res Int. 2016;2016:2136215. doi: 10.1155/2016/2136215. Epub 2016 Mar 3.

8.

Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.

Sarkar S, Lee GY, Wong JY, Desai TA.

Biomaterials. 2006 Sep;27(27):4775-82. Epub 2006 May 24.

PMID:
16725195
9.

The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.

Sung HJ, Meredith C, Johnson C, Galis ZS.

Biomaterials. 2004 Nov;25(26):5735-42.

PMID:
15147819
10.

Biocompatibility of PCL/PLGA-BCP porous scaffold for bone tissue engineering applications.

Thi Hiep N, Chan Khon H, Dai Hai N, Byong-Taek L, Van Toi V, Thanh Hung L.

J Biomater Sci Polym Ed. 2017 Jun;28(9):864-878. doi: 10.1080/09205063.2017.1311821. Epub 2017 Apr 12.

PMID:
28345449
11.

Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.

Xu M, Li Y, Suo H, Yan Y, Liu L, Wang Q, Ge Y, Xu Y.

Biofabrication. 2010 Jun;2(2):025002. doi: 10.1088/1758-5082/2/2/025002. Epub 2010 Mar 10.

PMID:
20811130
12.

Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology.

Yu D, Li Q, Mu X, Chang T, Xiong Z.

Int J Oral Maxillofac Surg. 2008 Oct;37(10):929-34. doi: 10.1016/j.ijom.2008.07.012. Epub 2008 Sep 2.

PMID:
18768295
13.

PHBV microspheres--PLGA matrix composite scaffold for bone tissue engineering.

Huang W, Shi X, Ren L, Du C, Wang Y.

Biomaterials. 2010 May;31(15):4278-85. doi: 10.1016/j.biomaterials.2010.01.059. Epub 2010 Mar 2.

PMID:
20199806
14.

Effect of solid freeform fabrication-based polycaprolactone/poly(lactic-co-glycolic acid)/collagen scaffolds on cellular activities of human adipose-derived stem cells and rat primary hepatocytes.

Shim JH, Kim AJ, Park JY, Yi N, Kang I, Park J, Rhie JW, Cho DW.

J Mater Sci Mater Med. 2013 Apr;24(4):1053-65. doi: 10.1007/s10856-013-4867-8. Epub 2013 Feb 22. Erratum in: J Mater Sci Mater Med. 2013 Apr;24(4):1823.

PMID:
23430333
15.

Hydrophilized polycaprolactone nanofiber mesh-embedded poly(glycolic-co-lactic acid) membrane for effective guided bone regeneration.

Cho WJ, Kim JH, Oh SH, Nam HH, Kim JM, Lee JH.

J Biomed Mater Res A. 2009 Nov;91(2):400-7. doi: 10.1002/jbm.a.32264.

PMID:
18980200
16.

In vitro and in vivo evaluation of bone formation using solid freeform fabrication-based bone morphogenic protein-2 releasing PCL/PLGA scaffolds.

Kim TH, Yun YP, Park YE, Lee SH, Yong W, Kundu J, Jung JW, Shim JH, Cho DW, Kim SE, Song HR.

Biomed Mater. 2014 Apr;9(2):025008. doi: 10.1088/1748-6041/9/2/025008. Epub 2014 Feb 11.

PMID:
24518200
17.

Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model.

Ge Z, Tian X, Heng BC, Fan V, Yeo JF, Cao T.

Biomed Mater. 2009 Apr;4(2):021001. doi: 10.1088/1748-6041/4/2/021001. Epub 2009 Feb 11.

PMID:
19208943
18.

Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering.

Park SA, Lee SH, Kim WD.

Bioprocess Biosyst Eng. 2011 May;34(4):505-13. doi: 10.1007/s00449-010-0499-2. Epub 2010 Dec 18.

PMID:
21170553
19.

[Experimental studies on a new bone tissue engineered scaffold biomaterials combined with cultured marrow stromal stem cells in vitro].

Pan H, Zheng Q, Guo X.

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2007 Jan;21(1):65-9. Chinese.

PMID:
17305008
20.

Mechanical properties evolution of a PLGA-PLCL composite scaffold for ligament tissue engineering under static and cyclic traction-torsion in vitro culture conditions.

Kahn CJ, Ziani K, Zhang YM, Liu J, Tran N, Babin J, de Isla N, Six JL, Wang X.

J Biomater Sci Polym Ed. 2013;24(8):899-911. doi: 10.1080/09205063.2012.727265. Epub 2012 Oct 1.

PMID:
23647247

Supplemental Content

Support Center