Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Superoxide reaction with tyrosyl radicals generates para-hydroperoxy and para-hydroxy derivatives of tyrosine.

Möller MN, Hatch DM, Kim HY, Porter NA.

J Am Chem Soc. 2012 Oct 10;134(40):16773-80. doi: 10.1021/ja307215z. Epub 2012 Sep 28.

PMID:
22989205
2.

Superoxide-mediated formation of tyrosine hydroperoxides and methionine sulfoxide in peptides through radical addition and intramolecular oxygen transfer.

Nagy P, Kettle AJ, Winterbourn CC.

J Biol Chem. 2009 May 29;284(22):14723-33. doi: 10.1074/jbc.M809396200. Epub 2009 Mar 18.

3.

Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides.

Winterbourn CC, Parsons-Mair HN, Gebicki S, Gebicki JM, Davies MJ.

Biochem J. 2004 Jul 1;381(Pt 1):241-8.

4.

Rapid reaction of superoxide with insulin-tyrosyl radicals to generate a hydroperoxide with subsequent glutathione addition.

Das AB, Nauser T, Koppenol WH, Kettle AJ, Winterbourn CC, Nagy P.

Free Radic Biol Med. 2014 May;70:86-95. doi: 10.1016/j.freeradbiomed.2014.02.006. Epub 2014 Feb 20. Erratum in: Free Radic Biol Med. 2015 May;82:206.

PMID:
24561577
5.

Electron paramagnetic resonance detection of free tyrosyl radical generated by myeloperoxidase, lactoperoxidase, and horseradish peroxidase.

McCormick ML, Gaut JP, Lin TS, Britigan BE, Buettner GR, Heinecke JW.

J Biol Chem. 1998 Nov 27;273(48):32030-7.

6.

Generation of superoxide and tyrosine peroxide as a result of tyrosyl radical scavenging by glutathione.

Pichorner H, Metodiewa D, Winterbourn CC.

Arch Biochem Biophys. 1995 Nov 10;323(2):429-37.

PMID:
7487108
7.

The fate of the oxidizing tyrosyl radical in the presence of glutathione and ascorbate. Implications for the radical sink hypothesis.

Sturgeon BE, Sipe HJ Jr, Barr DP, Corbett JT, Martinez JG, Mason RP.

J Biol Chem. 1998 Nov 13;273(46):30116-21.

8.
9.

Myeloperoxidase-dependent generation of a tyrosine peroxide by neutrophils.

Winterbourn CC, Pichorner H, Kettle AJ.

Arch Biochem Biophys. 1997 Feb 1;338(1):15-21.

PMID:
9015382
10.
11.

Formation of a tyrosyl radical in xanthine oxidase.

Conrads T, Hemann C, Hille R.

Biochemistry. 1998 May 26;37(21):7787-91.

PMID:
9601039
12.

Enzymatic and non-enzymatic oxygenation of tyrosine.

Wittbjer A, Odh G, Rosengren E, Rorsman H.

Pigment Cell Res. 1996 Apr;9(2):92-5.

PMID:
8857672
13.

Singlet oxygen-mediated protein oxidation: evidence for the formation of reactive side chain peroxides on tyrosine residues.

Wright A, Bubb WA, Hawkins CL, Davies MJ.

Photochem Photobiol. 2002 Jul;76(1):35-46.

PMID:
12126305
14.

Reactions of superoxide with the myoglobin tyrosyl radical.

Das AB, Nagy P, Abbott HF, Winterbourn CC, Kettle AJ.

Free Radic Biol Med. 2010 Jun 1;48(11):1540-7. doi: 10.1016/j.freeradbiomed.2010.02.039. Epub 2010 Mar 6.

PMID:
20211247
15.

The role of superoxide in xanthine oxidase-induced autooxidation of linoleic acid.

Thomas MJ, Mehl KS, Pryor WA.

J Biol Chem. 1982 Jul 25;257(14):8343-7.

16.

Radical-radical reactions of superoxide: a potential route to toxicity.

Winterbourn CC, Kettle AJ.

Biochem Biophys Res Commun. 2003 Jun 6;305(3):729-36. Review.

PMID:
12763053
17.

Redox cycling of potential antitumor aziridinyl quinones.

Lusthof KJ, de Mol NJ, Richter W, Janssen LH, Butler J, Hoey BM, Verboom W, Reinhoudt DN.

Free Radic Biol Med. 1992 Dec;13(6):599-608.

PMID:
1334033
18.
19.
20.

Characteristics of chemiluminescence observed in the horseradish peroxidase-hydrogen peroxide-tyrosine system.

Totsune H, Ohno C, Kambayashi Y, Nakano M, Ushijima Y, Tero-Kubota S, Ikegami Y.

Arch Biochem Biophys. 1999 Sep 15;369(2):233-42.

PMID:
10486142

Supplemental Content

Support Center