Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 63

1.

M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer.

Ghosh D, Lee Y, Thomas S, Kohli AG, Yun DS, Belcher AM, Kelly KA.

Nat Nanotechnol. 2012 Oct;7(10):677-82. doi: 10.1038/nnano.2012.146. Epub 2012 Sep 16.

2.

[Targeted magnetic nanoparticles used as probe for magnetic resonance molecular imaging of tumor].

Lu JJ, Wang F, Jin ZY, Zhong DR.

Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2009 Apr;31(2):124-8. Chinese.

3.

Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes.

Ghosh D, Bagley AF, Na YJ, Birrer MJ, Bhatia SN, Belcher AM.

Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13948-53. doi: 10.1073/pnas.1400821111. Epub 2014 Sep 11.

4.

Fluorescent magnetic nanoparticles with specific targeting functions for combinded targeting, optical imaging and magnetic resonance imaging.

Chen YC, Chang WH, Wang SJ, Hsieh WY.

J Biomater Sci Polym Ed. 2012;23(15):1903-22. doi: 10.1163/092050611X598329. Epub 2012 May 8.

PMID:
22024467
5.

Longitudinal MRI contrast enhanced monitoring of early tumour development with manganese chloride (MnCl2) and superparamagnetic iron oxide nanoparticles (SPIOs) in a CT1258 based in vivo model of prostate cancer.

Sterenczak KA, Meier M, Glage S, Meyer M, Willenbrock S, Wefstaedt P, Dorsch M, Bullerdiek J, Murua Escobar H, Hedrich H, Nolte I.

BMC Cancer. 2012 Jul 11;12:284.

6.

Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles.

Islam T, Josephson L.

Cancer Biomark. 2009;5(2):99-107. doi: 10.3233/CBM-2009-0615. Review.

PMID:
19414927
7.

Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles.

Sun C, Fang C, Stephen Z, Veiseh O, Hansen S, Lee D, Ellenbogen RG, Olson J, Zhang M.

Nanomedicine (Lond). 2008 Aug;3(4):495-505. doi: 10.2217/17435889.3.4.495.

8.

Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer.

Liu Y, Feng L, Liu T, Zhang L, Yao Y, Yu D, Wang L, Zhang N.

Nanoscale. 2014 Mar 21;6(6):3231-42. doi: 10.1039/c3nr05647c. Epub 2014 Feb 6.

PMID:
24500240
9.

pH-responsive iron manganese silicate nanoparticles as T1-T2* dual-modal imaging probes for tumor diagnosis.

Chen J, Zhang WJ, Guo Z, Wang HB, Wang DD, Zhou JJ, Chen QW.

ACS Appl Mater Interfaces. 2015 Mar 11;7(9):5373-83. doi: 10.1021/acsami.5b00727. Epub 2015 Feb 27.

PMID:
25685956
10.

Targeted Herceptin-dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI.

Chen TJ, Cheng TH, Chen CY, Hsu SC, Cheng TL, Liu GC, Wang YM.

J Biol Inorg Chem. 2009 Feb;14(2):253-60. doi: 10.1007/s00775-008-0445-9. Epub 2008 Oct 31.

PMID:
18975017
11.

PSMA-targeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer.

Tse BW, Cowin GJ, Soekmadji C, Jovanovic L, Vasireddy RS, Ling MT, Khatri A, Liu T, Thierry B, Russell PJ.

Nanomedicine (Lond). 2015 Feb;10(3):375-86. doi: 10.2217/nnm.14.122. Epub 2014 Nov 19.

12.

Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging.

Serda RE, Adolphi NL, Bisoffi M, Sillerud LO.

Mol Imaging. 2007 Jul-Aug;6(4):277-88.

PMID:
17711783
13.

M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors.

Yi H, Ghosh D, Ham MH, Qi J, Barone PW, Strano MS, Belcher AM.

Nano Lett. 2012 Mar 14;12(3):1176-1183. doi: 10.1021/nl2031663. Epub 2012 Feb 6.

14.

EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma.

Hadjipanayis CG, Machaidze R, Kaluzova M, Wang L, Schuette AJ, Chen H, Wu X, Mao H.

Cancer Res. 2010 Aug 1;70(15):6303-12. doi: 10.1158/0008-5472.CAN-10-1022. Epub 2010 Jul 20.

15.

Specific targeting of breast tumor by octreotide-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 3.0-Tesla magnetic resonance scanner.

Li X, Du X, Huo T, Liu X, Zhang S, Yuan F.

Acta Radiol. 2009 Jul;50(6):583-94. doi: 10.1080/02841850902902557.

PMID:
19449236
16.

MR and iron magnetic nanoparticles. Imaging opportunities in preclinical and translational research.

Neumaier CE, Baio G, Ferrini S, Corte G, Daga A.

Tumori. 2008 Mar-Apr;94(2):226-33. Review.

17.

Modularly assembled magnetite nanoparticles enhance in vivo targeting for magnetic resonance cancer imaging.

Wu PC, Su CH, Cheng FY, Weng JC, Chen JH, Tsai TL, Yeh CS, Su WC, Hwu JR, Tzeng Y, Shieh DB.

Bioconjug Chem. 2008 Oct;19(10):1972-9. doi: 10.1021/bc800092w. Epub 2008 Sep 23.

PMID:
18808169
18.

Collagen mimetic peptide engineered M13 bacteriophage for collagen targeting and imaging in cancer.

Jin HE, Farr R, Lee SW.

Biomaterials. 2014 Nov;35(33):9236-45. doi: 10.1016/j.biomaterials.2014.07.044. Epub 2014 Aug 10.

PMID:
25115789
19.

MR molecular imaging of prostate cancer with a peptide-targeted contrast agent in a mouse orthotopic prostate cancer model.

Tan M, Burden-Gulley SM, Li W, Wu X, Lindner D, Brady-Kalnay SM, Gulani V, Lu ZR.

Pharm Res. 2012 Apr;29(4):953-60. doi: 10.1007/s11095-011-0635-y. Epub 2011 Dec 3.

20.

Dual-imaging enabled cancer-targeting nanoparticles.

Wadajkar AS, Kadapure T, Zhang Y, Cui W, Nguyen KT, Yang J.

Adv Healthc Mater. 2012 Jul;1(4):450-6.

Supplemental Content

Support Center