Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

Capture, isolation and release of cancer cells with aptamer-functionalized glass bead array.

Wan Y, Liu Y, Allen PB, Asghar W, Mahmood MA, Tan J, Duhon H, Kim YT, Ellington AD, Iqbal SM.

Lab Chip. 2012 Nov 21;12(22):4693-701. doi: 10.1039/c2lc21251j.

2.

Nanotextured substrates with immobilized aptamers for cancer cell isolation and cytology.

Wan Y, Mahmood MA, Li N, Allen PB, Kim YT, Bachoo R, Ellington AD, Iqbal SM.

Cancer. 2012 Feb 15;118(4):1145-54. doi: 10.1002/cncr.26349. Epub 2011 Jul 15.

3.

Aptamer-functionalized nano/micro-materials for clinical diagnosis: isolation, release and bioanalysis of circulating tumor cells.

Zhao Y, Xu D, Tan W.

Integr Biol (Camb). 2017 Mar 1;9(3):188-205. doi: 10.1039/c6ib00239k. Epub 2017 Feb 1. Review.

PMID:
28144664
4.

Velocity effect on aptamer-based circulating tumor cell isolation in microfluidic devices.

Wan Y, Tan J, Asghar W, Kim YT, Liu Y, Iqbal SM.

J Phys Chem B. 2011 Dec 1;115(47):13891-6. doi: 10.1021/jp205511m. Epub 2011 Nov 7.

PMID:
22029250
5.

Endonuclease-responsive aptamer-functionalized hydrogel coating for sequential catch and release of cancer cells.

Li S, Chen N, Zhang Z, Wang Y.

Biomaterials. 2013 Jan;34(2):460-9. doi: 10.1016/j.biomaterials.2012.09.040. Epub 2012 Oct 17.

PMID:
23083933
6.

Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device.

Sheng W, Chen T, Kamath R, Xiong X, Tan W, Fan ZH.

Anal Chem. 2012 May 1;84(9):4199-206. doi: 10.1021/ac3005633. Epub 2012 Apr 17.

7.

Surface-immobilized aptamers for cancer cell isolation and microscopic cytology.

Wan Y, Kim YT, Li N, Cho SK, Bachoo R, Ellington AD, Iqbal SM.

Cancer Res. 2010 Nov 15;70(22):9371-80. doi: 10.1158/0008-5472.CAN-10-0568. Epub 2010 Nov 9. Erratum in: Cancer Res. 2011 Jan 15;71(2):626. Cancer Res. 2011 Mar 15;71(6):2408.

8.

Aptamer-containing surfaces for selective capture of CD4 expressing cells.

Zhou Q, Liu Y, Shin DS, Silangcruz J, Tuleuova N, Revzin A.

Langmuir. 2012 Aug 28;28(34):12544-9. doi: 10.1021/la2050338. Epub 2012 Aug 14.

9.

Biotin-triggered decomposable immunomagnetic beads for capture and release of circulating tumor cells.

Lu NN, Xie M, Wang J, Lv SW, Yi JS, Dong WG, Huang WH.

ACS Appl Mater Interfaces. 2015 Apr 29;7(16):8817-26. doi: 10.1021/acsami.5b01397. Epub 2015 Apr 17.

PMID:
25853336
10.

A rapid and simple method for efficient capture and accurate discrimination of circulating tumor cells using aptamer conjugated magnetic beads and surface-enhanced Raman scattering imaging.

Sun C, Zhang R, Gao M, Zhang X.

Anal Bioanal Chem. 2015 Nov;407(29):8883-92. doi: 10.1007/s00216-015-9049-8. Epub 2015 Oct 8.

PMID:
26449846
11.
12.

A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells.

Fan X, Jia C, Yang J, Li G, Mao H, Jin Q, Zhao J.

Biosens Bioelectron. 2015 Sep 15;71:380-386. doi: 10.1016/j.bios.2015.04.080. Epub 2015 Apr 24.

PMID:
25950932
13.

Specific capture and release of circulating tumor cells using aptamer-modified nanosubstrates.

Shen Q, Xu L, Zhao L, Wu D, Fan Y, Zhou Y, Ouyang WH, Xu X, Zhang Z, Song M, Lee T, Garcia MA, Xiong B, Hou S, Tseng HR, Fang X.

Adv Mater. 2013 Apr 24;25(16):2368-73. doi: 10.1002/adma.201300082. Epub 2013 Mar 12. No abstract available.

14.

Efficient microfluidic negative enrichment of circulating tumor cells in blood using roughened PDMS.

DiƩguez L, Winter MA, Pocock KJ, Bremmell KE, Thierry B.

Analyst. 2015 May 21;140(10):3565-72. doi: 10.1039/c4an01768d. Epub 2015 Apr 8.

PMID:
25853462
15.

Nanotextured polymer substrates show enhanced cancer cell isolation and cell culture.

Islam M, Sajid A, Mahmood MA, Bellah MM, Allen PB, Kim YT, Iqbal SM.

Nanotechnology. 2015 Jun 5;26(22):225101. doi: 10.1088/0957-4484/26/22/225101. Epub 2015 May 11.

PMID:
25961762
16.

SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter.

Kim MS, Sim TS, Kim YJ, Kim SS, Jeong H, Park JM, Moon HS, Kim SI, Gurel O, Lee SS, Lee JG, Park JC.

Lab Chip. 2012 Aug 21;12(16):2874-80. doi: 10.1039/c2lc40065k. Epub 2012 Jun 11.

PMID:
22684249
17.

Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity.

Wang DL, Song YL, Zhu Z, Li XL, Zou Y, Yang HT, Wang JJ, Yao PS, Pan RJ, Yang CJ, Kang DZ.

Biochem Biophys Res Commun. 2014 Oct 31;453(4):681-5. doi: 10.1016/j.bbrc.2014.09.023. Epub 2014 Sep 19.

PMID:
25242523
18.

Capturing cancer cells using aptamer-immobilized square capillary channels.

Martin JA, Phillips JA, Parekh P, Sefah K, Tan W.

Mol Biosyst. 2011 May;7(5):1720-7. doi: 10.1039/c0mb00311e. Epub 2011 Mar 22.

PMID:
21424012
19.

Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices.

Sheng W, Chen T, Tan W, Fan ZH.

ACS Nano. 2013 Aug 27;7(8):7067-76. doi: 10.1021/nn4023747. Epub 2013 Jul 15.

20.

Microchip-based immunomagnetic detection of circulating tumor cells.

Hoshino K, Huang YY, Lane N, Huebschman M, Uhr JW, Frenkel EP, Zhang X.

Lab Chip. 2011 Oct 21;11(20):3449-57. doi: 10.1039/c1lc20270g. Epub 2011 Aug 24.

Supplemental Content

Support Center