Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 233

1.

Influence of fiber orientation in electrospun polymer scaffolds on viability, adhesion and differentiation of articular chondrocytes.

Schneider T, Kohl B, Sauter T, Kratz K, Lendlein A, Ertel W, Schulze-Tanzil G.

Clin Hemorheol Microcirc. 2012;52(2-4):325-36. doi: 10.3233/CH-2012-1608.

PMID:
22975946
2.

Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering.

Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, Minami A, Monde K, Nishimura S.

Biomaterials. 2005 Feb;26(6):611-9.

PMID:
15282139
3.

Enhanced biochemical and biomechanical properties of scaffolds generated by flock technology for cartilage tissue engineering.

Steck E, Bertram H, Walther A, Brohm K, Mrozik B, Rathmann M, Merle C, Gelinsky M, Richter W.

Tissue Eng Part A. 2010 Dec;16(12):3697-707. doi: 10.1089/ten.TEA.2009.0817. Epub 2010 Sep 1.

PMID:
20673020
4.

An electrospun degradable scaffold based on a novel hydrophilic polyester for tissue-engineering applications.

Seyednejad H, Ji W, Schuurman W, Dhert WJ, Malda J, Yang F, Jansen JA, van Nostrum C, Vermonden T, Hennink WE.

Macromol Biosci. 2011 Dec 8;11(12):1684-92. doi: 10.1002/mabi.201100229. Epub 2011 Sep 19.

PMID:
21932335
5.

A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes.

Oliveira JT, Crawford A, Mundy JM, Moreira AR, Gomes ME, Hatton PV, Reis RL.

J Mater Sci Mater Med. 2007 Feb;18(2):295-302.

PMID:
17323161
6.

Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.

Li WJ, Cooper JA Jr, Mauck RL, Tuan RS.

Acta Biomater. 2006 Jul;2(4):377-85. Epub 2006 May 6.

PMID:
16765878
7.

Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds.

Park GE, Pattison MA, Park K, Webster TJ.

Biomaterials. 2005 Jun;26(16):3075-82.

PMID:
15603802
8.

Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.

Wang Y, Zhao Z, Zhao B, Qi HX, Peng J, Zhang L, Xu WJ, Hu P, Lu SB.

Chin Med J (Engl). 2011 Aug;124(15):2361-6.

PMID:
21933569
9.
10.

Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering.

Eglin D, Grad S, Gogolewski S, Alini M.

J Biomed Mater Res A. 2010 Jan;92(1):393-408. doi: 10.1002/jbm.a.32385.

PMID:
19191318
11.

Mesenchymal stromal cell-derived extracellular matrix influences gene expression of chondrocytes.

Thakkar S, Ghebes CA, Ahmed M, Kelder C, van Blitterswijk CA, Saris D, Fernandes HA, Moroni L.

Biofabrication. 2013 Jun;5(2):025003. doi: 10.1088/1758-5082/5/2/025003. Epub 2013 Feb 27.

PMID:
23443652
12.

Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering.

Mirahmadi F, Tafazzoli-Shadpour M, Shokrgozar MA, Bonakdar S.

Mater Sci Eng C Mater Biol Appl. 2013 Dec 1;33(8):4786-94. doi: 10.1016/j.msec.2013.07.043. Epub 2013 Aug 6.

PMID:
24094188
13.

Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.

Woodfield TB, Malda J, de Wijn J, Péters F, Riesle J, van Blitterswijk CA.

Biomaterials. 2004 Aug;25(18):4149-61.

PMID:
15046905
14.

Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications.

Moroni L, Hendriks JA, Schotel R, de Wijn JR, van Blitterswijk CA.

Tissue Eng. 2007 Feb;13(2):361-71.

PMID:
17504063
15.

Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro.

Shin HJ, Lee CH, Cho IH, Kim YJ, Lee YJ, Kim IA, Park KD, Yui N, Shin JW.

J Biomater Sci Polym Ed. 2006;17(1-2):103-19.

PMID:
16411602
16.

Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro.

van Susante JLC, Pieper J, Buma P, van Kuppevelt TH, van Beuningen H, van Der Kraan PM, Veerkamp JH, van den Berg WB, Veth RPH.

Biomaterials. 2001 Sep;22(17):2359-69.

PMID:
11511033
17.

TGF-beta1 immobilized tri-co-polymer for articular cartilage tissue engineering.

Chou CH, Cheng WT, Lin CC, Chang CH, Tsai CC, Lin FH.

J Biomed Mater Res B Appl Biomater. 2006 May;77(2):338-48.

PMID:
16470812
18.

Evaluation of the potential of novel PCL-PPDX biodegradable scaffolds as support materials for cartilage tissue engineering.

Chaim IA, Sabino MA, Mendt M, Müller AJ, Ajami D.

J Tissue Eng Regen Med. 2012 Apr;6(4):272-9. doi: 10.1002/term.430. Epub 2011 May 5.

PMID:
21548137
19.

Rat costochondral cell characteristics on poly (L-lactide-co-epsilon-caprolactone) scaffolds.

Honda M, Morikawa N, Hata K, Yada T, Morita S, Ueda M, Kimata K.

Biomaterials. 2003 Sep;24(20):3511-9.

PMID:
12809780
20.

Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs.

Woodfield TB, Van Blitterswijk CA, De Wijn J, Sims TJ, Hollander AP, Riesle J.

Tissue Eng. 2005 Sep-Oct;11(9-10):1297-311.

PMID:
16259586

Supplemental Content

Support Center