Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 159

1.

Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana.

Chao DY, Silva A, Baxter I, Huang YS, Nordborg M, Danku J, Lahner B, Yakubova E, Salt DE.

PLoS Genet. 2012 Sep;8(9):e1002923. doi: 10.1371/journal.pgen.1002923.

2.

Variation in sulfur and selenium accumulation is controlled by naturally occurring isoforms of the key sulfur assimilation enzyme ADENOSINE 5'-PHOSPHOSULFATE REDUCTASE2 across the Arabidopsis species range.

Chao DY, Baraniecka P, Danku J, Koprivova A, Lahner B, Luo H, Yakubova E, Dilkes B, Kopriva S, Salt DE.

Plant Physiol. 2014 Nov;166(3):1593-608. doi: 10.1104/pp.114.247825.

3.

Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots.

Wu H, Chen C, Du J, Liu H, Cui Y, Zhang Y, He Y, Wang Y, Chu C, Feng Z, Li J, Ling HQ.

Plant Physiol. 2012 Feb;158(2):790-800. doi: 10.1104/pp.111.190983.

4.

Association mapping of cadmium, copper and hydrogen peroxide tolerance of roots and translocation capacities of cadmium and copper in Arabidopsis thaliana.

Tazib T, Kobayashi Y, Ikka T, Zhao CR, Iuchi S, Kobayashi M, Kimura K, Koyama H.

Physiol Plant. 2009 Nov;137(3):235-48. doi: 10.1111/j.1399-3054.2009.01286.x.

PMID:
19832939
5.

A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase.

Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N.

Plant Physiol. 2007 Jun;144(2):1052-65.

6.

HMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier.

Siemianowski O, Barabasz A, Kendziorek M, Ruszczynska A, Bulska E, Williams LE, Antosiewicz DM.

J Exp Bot. 2014 Mar;65(4):1125-39. doi: 10.1093/jxb/ert471.

7.

The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana.

Gayomba SR, Jung HI, Yan J, Danku J, Rutzke MA, Bernal M, Krämer U, Kochian LV, Salt DE, Vatamaniuk OK.

Metallomics. 2013 Sep;5(9):1262-75. doi: 10.1039/c3mt00111c.

PMID:
23835944
8.

Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants.

Chao DY, Chen Y, Chen J, Shi S, Chen Z, Wang C, Danku JM, Zhao FJ, Salt DE.

PLoS Biol. 2014 Dec 2;12(12):e1002009. doi: 10.1371/journal.pbio.1002009.

9.

Inactivation of two newly identified tobacco heavy metal ATPases leads to reduced Zn and Cd accumulation in shoots and reduced pollen germination.

Hermand V, Julio E, Dorlhac de Borne F, Punshon T, Ricachenevsky FK, Bellec A, Gosti F, Berthomieu P.

Metallomics. 2014 Aug;6(8):1427-40. doi: 10.1039/c4mt00071d.

10.

CATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis Spp.

Baliardini C, Meyer CL, Salis P, Saumitou-Laprade P, Verbruggen N.

Plant Physiol. 2015 Sep;169(1):549-59. doi: 10.1104/pp.15.01037.

11.

Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis.

Huang J, Zhang Y, Peng JS, Zhong C, Yi HY, Ow DW, Gong JM.

Plant Physiol. 2012 Apr;158(4):1779-88. doi: 10.1104/pp.111.192872.

12.

Hard selective sweep and ectopic gene conversion in a gene cluster affording environmental adaptation.

Hanikenne M, Kroymann J, Trampczynska A, Bernal M, Motte P, Clemens S, Krämer U.

PLoS Genet. 2013;9(8):e1003707. doi: 10.1371/journal.pgen.1003707.

13.

Amino acid polymorphisms in strictly conserved domains of a P-type ATPase HMA5 are involved in the mechanism of copper tolerance variation in Arabidopsis.

Kobayashi Y, Kuroda K, Kimura K, Southron-Francis JL, Furuzawa A, Kimura K, Iuchi S, Kobayashi M, Taylor GJ, Koyama H.

Plant Physiol. 2008 Oct;148(2):969-80. doi: 10.1104/pp.108.119933.

14.

Genome-wide association mapping of cadmium accumulation in different organs of barley.

Wu D, Sato K, Ma JF.

New Phytol. 2015 Nov;208(3):817-29. doi: 10.1111/nph.13512.

15.

Combining linkage and association mapping identifies RECEPTOR-LIKE PROTEIN KINASE1 as an essential Arabidopsis shoot regeneration gene.

Motte H, Vercauteren A, Depuydt S, Landschoot S, Geelen D, Werbrouck S, Goormachtig S, Vuylsteke M, Vereecke D.

Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8305-10. doi: 10.1073/pnas.1404978111.

16.

The dilemma of controlling heavy metal accumulation in plants.

Kraemer U.

New Phytol. 2009;181(1):3-5. doi: 10.1111/j.1469-8137.2008.02699.x. No abstract available.

17.

Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation.

Wojas S, Hennig J, Plaza S, Geisler M, Siemianowski O, Skłodowska A, Ruszczyńska A, Bulska E, Antosiewicz DM.

Environ Pollut. 2009 Oct;157(10):2781-9. doi: 10.1016/j.envpol.2009.04.024.

PMID:
19467746
18.

Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens.

Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, Clemencia Zambrano M, Kaskie M, Ebbs S, Kochian LV, Ma JF.

Plant J. 2011 Jun;66(5):852-62. doi: 10.1111/j.1365-313X.2011.04548.x.

19.

Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L.

Korenkov V, King B, Hirschi K, Wagner GJ.

Plant Biotechnol J. 2009 Apr;7(3):219-26. doi: 10.1111/j.1467-7652.2008.00390.x.

20.

A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1.

Baxter I, Brazelton JN, Yu D, Huang YS, Lahner B, Yakubova E, Li Y, Bergelson J, Borevitz JO, Nordborg M, Vitek O, Salt DE.

PLoS Genet. 2010 Nov 11;6(11):e1001193. doi: 10.1371/journal.pgen.1001193.

Items per page

Supplemental Content

Support Center