Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 705

1.

Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.

Omodaka S, Sugiyama S, Inoue T, Funamoto K, Fujimura M, Shimizu H, Hayase T, Takahashi A, Tominaga T.

Cerebrovasc Dis. 2012;34(2):121-9. doi: 10.1159/000339678. Epub 2012 Aug 1.

PMID:
22965244
2.

Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points.

Fukazawa K, Ishida F, Umeda Y, Miura Y, Shimosaka S, Matsushima S, Taki W, Suzuki H.

World Neurosurg. 2015 Jan;83(1):80-6. doi: 10.1016/j.wneu.2013.02.012. Epub 2013 Feb 9.

PMID:
23403347
3.

Computational fluid dynamic analysis of intracranial aneurysmal bleb formation.

Russell JH, Kelson N, Barry M, Pearcy M, Fletcher DF, Winter CD.

Neurosurgery. 2013 Dec;73(6):1061-8; discussion 1068-9. doi: 10.1227/NEU.0000000000000137.

PMID:
23949275
4.

Patient-specific hemodynamic analysis of small internal carotid artery-ophthalmic artery aneurysms.

Chien A, Tateshima S, Sayre J, Castro M, Cebral J, Viñuela F.

Surg Neurol. 2009 Nov;72(5):444-50; discussion 450. doi: 10.1016/j.surneu.2008.12.013. Epub 2009 Mar 29.

PMID:
19329152
5.

Distinctive flow pattern of wall shear stress and oscillatory shear index: similarity and dissimilarity in ruptured and unruptured cerebral aneurysm blebs.

Kawaguchi T, Nishimura S, Kanamori M, Takazawa H, Omodaka S, Sato K, Maeda N, Yokoyama Y, Midorikawa H, Sasaki T, Nishijima M.

J Neurosurg. 2012 Oct;117(4):774-80. doi: 10.3171/2012.7.JNS111991. Epub 2012 Aug 24.

PMID:
22920960
6.
7.

Hemodynamic changes in a middle cerebral artery aneurysm at follow-up times before and after its rupture: a case report and a review of the literature.

Sejkorová A, Dennis KD, Švihlová H, Petr O, Lanzino G, Hejčl A, Dragomir-Daescu D.

Neurosurg Rev. 2017 Apr;40(2):329-338. doi: 10.1007/s10143-016-0795-7. Epub 2016 Nov 24. Review.

PMID:
27882440
8.

The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.

Xiang J, Siddiqui AH, Meng H.

J Biomech. 2014 Dec 18;47(16):3882-90. doi: 10.1016/j.jbiomech.2014.09.034. Epub 2014 Oct 13.

9.
10.

Changes in wall shear stress magnitude after aneurysm rupture.

Kono K, Tomura N, Yoshimura R, Terada T.

Acta Neurochir (Wien). 2013 Aug;155(8):1559-63. doi: 10.1007/s00701-013-1773-2. Epub 2013 May 29.

PMID:
23715949
11.

A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions.

Evju Ø, Valen-Sendstad K, Mardal KA.

J Biomech. 2013 Nov 15;46(16):2802-8. doi: 10.1016/j.jbiomech.2013.09.004. Epub 2013 Sep 16.

PMID:
24099744
12.
13.

Hemodynamic-morphologic discriminants for intracranial aneurysm rupture.

Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, Siddiqui AH, Levy EI, Meng H.

Stroke. 2011 Jan;42(1):144-52. doi: 10.1161/STROKEAHA.110.592923. Epub 2010 Nov 24.

14.

Association between hemodynamics, morphology, and rupture risk of intracranial aneurysms: a computational fluid modeling study.

Qiu T, Jin G, Xing H, Lu H.

Neurol Sci. 2017 Jun;38(6):1009-1018. doi: 10.1007/s10072-017-2904-y. Epub 2017 Mar 11.

15.

Low wall shear stress is independently associated with the rupture status of middle cerebral artery aneurysms.

Miura Y, Ishida F, Umeda Y, Tanemura H, Suzuki H, Matsushima S, Shimosaka S, Taki W.

Stroke. 2013 Feb;44(2):519-21. doi: 10.1161/STROKEAHA.112.675306. Epub 2012 Dec 6.

16.

Hemodynamic characteristics of large unruptured internal carotid artery aneurysms prior to rupture: a case control study.

Liu J, Fan J, Xiang J, Zhang Y, Yang X.

J Neurointerv Surg. 2016 Apr;8(4):367-72. doi: 10.1136/neurintsurg-2014-011577. Epub 2015 Feb 4.

PMID:
25653231
17.

High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis.

Meng H, Tutino VM, Xiang J, Siddiqui A.

AJNR Am J Neuroradiol. 2014 Jul;35(7):1254-62. doi: 10.3174/ajnr.A3558. Epub 2013 Apr 18. Review.

18.

Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms.

Shojima M, Oshima M, Takagi K, Torii R, Hayakawa M, Katada K, Morita A, Kirino T.

Stroke. 2004 Nov;35(11):2500-5.

19.

Computational fluid dynamics simulation of an anterior communicating artery ruptured during angiography.

Hodis S, Uthamaraj S, Lanzino G, Kallmes DF, Dragomir-Daescu D.

BMJ Case Rep. 2013 Mar 7;2013. pii: bcr2012010596. doi: 10.1136/bcr-2012-010596.

20.

Morphological-Hemodynamic Characteristics of Intracranial Bifurcation Mirror Aneurysms.

Fan J, Wang Y, Liu J, Jing L, Wang C, Li C, Yang X, Zhang Y.

World Neurosurg. 2015 Jul;84(1):114-120.e2. doi: 10.1016/j.wneu.2015.02.038. Epub 2015 Mar 6.

PMID:
25753233

Supplemental Content

Support Center