Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 124

1.

Visco-hyperelastic law for finite deformations: a frequency analysis.

Charlebois M, Motallebzadeh H, Funnell WR.

Biomech Model Mechanobiol. 2013 Aug;12(4):705-15. doi: 10.1007/s10237-012-0435-2. Epub 2012 Sep 11.

PMID:
22965177
2.

Simulation of mechanical responses of fingertip to dynamic loading.

Wu JZ, Dong RG, Rakheja S, Schopper AW.

Med Eng Phys. 2002 May;24(4):253-64.

PMID:
11996844
3.

A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.

Natali AN, Carniel EL, Pavan PG, Sander FG, Dorow C, Geiger M.

J Biomech Eng. 2008 Jun;130(3):031004. doi: 10.1115/1.2900415.

PMID:
18532853
5.

A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes.

Klöppel T, Wall WA.

Biomech Model Mechanobiol. 2011 Jul;10(4):445-59. doi: 10.1007/s10237-010-0246-2. Epub 2010 Aug 20.

PMID:
20725846
6.

Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation.

Schwartz JM, Denninger M, Rancourt D, Moisan C, Laurendeau D.

Med Image Anal. 2005 Apr;9(2):103-12. Epub 2004 Dec 2.

PMID:
15721226
7.

Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons.

Pioletti DP, Rakotomanana LR, Benvenuti JF, Leyvraz PF.

J Biomech. 1998 Aug;31(8):753-7.

PMID:
9796676
8.

Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.

Einstein DR, Reinhall P, Nicosia M, Cochran RP, Kunzelman K.

Comput Methods Biomech Biomed Engin. 2003 Feb;6(1):33-44.

PMID:
12623436
9.

A visco-hyperelastic model for skeletal muscle tissue under high strain rates.

Lu YT, Zhu HX, Richmond S, Middleton J.

J Biomech. 2010 Sep 17;43(13):2629-32. doi: 10.1016/j.jbiomech.2010.05.030. Epub 2010 Jun 20.

PMID:
20566197
10.

Analyzing the interplay between single cell rheology and force generation through large deformation finite element models.

Monteiro E, Yvonnet J, He QC, Cardoso O, Asnacios A.

Biomech Model Mechanobiol. 2011 Dec;10(6):813-30. doi: 10.1007/s10237-010-0276-9. Epub 2010 Dec 23.

PMID:
21181227
11.

A constitutive model for the periodontal ligament as a compressible transversely isotropic visco-hyperelastic tissue.

Zhurov AI, Limbert G, Aeschlimann DP, Middleton J.

Comput Methods Biomech Biomed Engin. 2007 Jun;10(3):223-35.

PMID:
17558650
12.
13.

A nonlinear elastic model of the periodontal ligament and its numerical calibration for the study of tooth mobility.

Pietrzak G, Curnier A, Botsis J, Scherrer S, Wiskott A, Belser U.

Comput Methods Biomech Biomed Engin. 2002 Apr;5(2):91-100.

PMID:
12186719
14.

A power-law rheology-based finite element model for single cell deformation.

Zhou EH, Xu F, Quek ST, Lim CT.

Biomech Model Mechanobiol. 2012 Sep;11(7):1075-84. doi: 10.1007/s10237-012-0374-y. Epub 2012 Feb 4.

PMID:
22307682
15.

Method for characterizing viscoelasticity of human gluteal tissue.

Then C, Vogl TJ, Silber G.

J Biomech. 2012 Apr 30;45(7):1252-8. doi: 10.1016/j.jbiomech.2012.01.037. Epub 2012 Feb 22.

PMID:
22360834
16.

Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.

Wagnac E, Arnoux PJ, Garo A, El-Rich M, Aubin CE.

J Biomech Eng. 2011 Oct;133(10):101007. doi: 10.1115/1.4005224.

PMID:
22070332
17.
18.

A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects.

Limbert G, Middleton J, Laizans J, Dobelis M, Knets I.

Comput Methods Biomech Biomed Engin. 2003 Oct-Dec;6(5-6):337-45.

PMID:
14675954
19.
20.

A model of non-uniform lung parenchyma distortion.

Denny E, Schroter RC.

J Biomech. 2006;39(4):652-63.

PMID:
16439235

Supplemental Content

Support Center