Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 120

1.

Farnesol induces apoptosis-like phenotype in the phytopathogenic fungus Botrytis cinerea.

Cotoras M, Castro P, Vivanco H, Melo R, Mendoza L.

Mycologia. 2013 Jan-Feb;105(1):28-33. doi: 10.3852/12-012. Epub 2012 Sep 6.

PMID:
22962358
2.

Inhibitory effect of bionic fungicide 2-allylphenol on Botrytis cinerea (Pers. ex Fr.) in vitro.

Gong S, Hao J, Xia Y, Liu X, Li J.

Pest Manag Sci. 2009 Dec;65(12):1337-43. doi: 10.1002/ps.1820.

PMID:
19685448
3.

Action mechanism for 3β-hydroxykaurenoic acid and 4,4-dimethylanthracene-1,9,10(4H)-trione on Botrytis cinerea.

Mendoza L, Ribera A, Saavedra A, Silva E, Araya-Maturana R, Cotoras M.

Mycologia. 2015 Jul-Aug;107(4):661-6. doi: 10.3852/14-162. Epub 2015 May 14.

PMID:
25977212
4.

Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions.

Cheng CH, Yang CA, Peng KC.

Phytopathology. 2012 Nov;102(11):1054-63. doi: 10.1094/PHYTO-11-11-0315.

5.

Farnesol induces apoptosis-like cell death in the pathogenic fungus Aspergillus flavus.

Wang X, Wang Y, Zhou Y, Wei X.

Mycologia. 2014 Sep-Oct;106(5):881-8. doi: 10.3852/13-292. Epub 2014 Jun 3.

PMID:
24895430
6.

Nested PCR-RFLP is a high-speed method to detect fungicide-resistant Botrytis cinerea at an early growth stage of grapes.

Saito S, Suzuki S, Takayanagi T.

Pest Manag Sci. 2009 Feb;65(2):197-204. doi: 10.1002/ps.1668.

PMID:
19051204
7.

Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions?

Chagué V, Danit LV, Siewers V, Schulze-Gronover C, Tudzynski P, Tudzynski B, Sharon A.

Mol Plant Microbe Interact. 2006 Jan;19(1):33-42.

8.

Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains.

González-Fernández R, Aloria K, Valero-Galván J, Redondo I, Arizmendi JM, Jorrín-Novo JV.

J Proteomics. 2014 Jan 31;97:195-221. doi: 10.1016/j.jprot.2013.06.022. Epub 2013 Jun 25.

9.

Synthesis of linear Geranylphenols and their effect on mycelial growth of plant pathogen Botrytis cinerea.

Espinoza L, Taborga L, Díaz K, Olea AF, Peña-Cortés H.

Molecules. 2014 Jan 27;19(2):1512-26. doi: 10.3390/molecules19021512.

10.

Inhibitory activity of tea polyphenol and Hanseniaspora uvarum against Botrytis cinerea infections.

Liu HM, Guo JH, Cheng YJ, Liu P, Long CA, Deng BX.

Lett Appl Microbiol. 2010 Sep;51(3):258-63. doi: 10.1111/j.1472-765X.2010.02888.x. Epub 2010 Jun 16.

11.

Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea.

An B, Li B, Li H, Zhang Z, Qin G, Tian S.

New Phytol. 2016 Mar;209(4):1668-80. doi: 10.1111/nph.13721. Epub 2015 Nov 3.

12.

Antifungal effect of 405-nm light on Botrytis cinerea.

Imada K, Tanaka S, Ibaraki Y, Yoshimura K, Ito S.

Lett Appl Microbiol. 2014 Dec;59(6):670-6. doi: 10.1111/lam.12330. Epub 2014 Oct 20.

PMID:
25236427
13.

Cloning and functional characterization of BcatrA, a gene encoding an ABC transporter of the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea).

Del Sorbo G, Ruocco M, Schoonbeek HJ, Scala F, Pane C, Vinale F, De Waard MA.

Mycol Res. 2008 Jun;112(Pt 6):737-46. doi: 10.1016/j.mycres.2008.01.005. Epub 2008 Feb 3.

PMID:
18515055
14.

Chasing stress signals - Exposure to extracellular stimuli differentially affects the redox state of cell compartments in the wild type and signaling mutants of Botrytis cinerea.

Marschall R, Schumacher J, Siegmund U, Tudzynski P.

Fungal Genet Biol. 2016 May;90:12-22. doi: 10.1016/j.fgb.2016.03.002. Epub 2016 Mar 14.

PMID:
26988904
15.

Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits.

Nguyen XH, Naing KW, Lee YS, Moon JH, Lee JH, Kim KY.

J Basic Microbiol. 2015 May;55(5):625-34. doi: 10.1002/jobm.201400041. Epub 2014 Aug 1.

PMID:
25081931
16.

Disruption of the Bcchs3a chitin synthase gene in Botrytis cinerea is responsible for altered adhesion and overstimulation of host plant immunity.

Arbelet D, Malfatti P, Simond-Côte E, Fontaine T, Desquilbet L, Expert D, Kunz C, Soulié MC.

Mol Plant Microbe Interact. 2010 Oct;23(10):1324-34. doi: 10.1094/MPMI-02-10-0046.

17.

The nature of tobacco resistance against Botrytis cinerea depends on the infection structures of the pathogen.

El Oirdi M, Trapani A, Bouarab K.

Environ Microbiol. 2010 Jan;12(1):239-53. doi: 10.1111/j.1462-2920.2009.02063.x. Epub 2009 Oct 2.

PMID:
19799622
18.

Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia.

Huang R, Li GQ, Zhang J, Yang L, Che HJ, Jiang DH, Huang HC.

Phytopathology. 2011 Jul;101(7):859-69. doi: 10.1094/PHYTO-09-10-0255.

19.

The ABC transporter BcatrB from Botrytis cinerea is a determinant of the activity of the phenylpyrrole fungicide fludioxonil.

Vermeulen T, Schoonbeek H, De Waard MA.

Pest Manag Sci. 2001 May;57(5):393-402.

PMID:
11374155
20.

Antifungal effectiveness of fungicide and peroxyacetic acid mixture on the growth of Botrytis cinerea.

Ayoub F, Ben Oujji N, Chebli B, Ayoub M, Hafidi A, Salghi R, Jodeh S.

Microb Pathog. 2017 Apr;105:74-80. doi: 10.1016/j.micpath.2017.02.014. Epub 2017 Feb 10.

PMID:
28192222

Supplemental Content

Support Center