Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 161

1.

How are inner hair cells stimulated? Evidence for multiple mechanical drives.

Guinan JJ Jr.

Hear Res. 2012 Oct;292(1-2):35-50. doi: 10.1016/j.heares.2012.08.005. Epub 2012 Aug 24.

2.

Non-tip auditory-nerve responses that are suppressed by low-frequency bias tones originate from reticular lamina motion.

Nam H, Guinan JJ Jr.

Hear Res. 2017 Dec 14;358:1-9. doi: 10.1016/j.heares.2017.12.008. [Epub ahead of print]

PMID:
29276975
3.

Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti.

Lee HY, Raphael PD, Xia A, Kim J, Grillet N, Applegate BE, Ellerbee Bowden AK, Oghalai JS.

J Neurosci. 2016 Aug 3;36(31):8160-73. doi: 10.1523/JNEUROSCI.1157-16.2016.

4.

Role of inner and outer hair cells in mechanical frequency selectivity of the cochlea.

Strelioff D, Flock A, Minser KE.

Hear Res. 1985 May;18(2):169-75.

PMID:
4044418
5.
6.

Low-frequency bias tone suppression of auditory-nerve responses to low-level clicks and tones.

Nam H, Guinan JJ Jr.

Hear Res. 2016 Nov;341:66-78. doi: 10.1016/j.heares.2016.08.007. Epub 2016 Aug 29.

7.

Traveling waves on the organ of corti of the chinchilla cochlea: spatial trajectories of inner hair cell depolarization inferred from responses of auditory-nerve fibers.

Temchin AN, Recio-Spinoso A, Cai H, Ruggero MA.

J Neurosci. 2012 Aug 1;32(31):10522-9. doi: 10.1523/JNEUROSCI.1138-12.2012.

9.

How OHC lesions can lead to neural cochlear hypersensitivity.

Zwislocki JJ.

Acta Otolaryngol. 1984 May-Jun;97(5-6):529-34.

PMID:
6464708
10.

The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics.

Meaud J, Grosh K.

J Acoust Soc Am. 2010 Mar;127(3):1411-21. doi: 10.1121/1.3290995.

11.

Vibration responses of the organ of Corti and the tectorial membrane to electrical stimulation.

Nowotny M, Gummer AW.

J Acoust Soc Am. 2011 Dec;130(6):3852-72. doi: 10.1121/1.3651822.

PMID:
22225042
12.

Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea.

Meaud J, Grosh K.

Biophys J. 2012 Mar 21;102(6):1237-46. doi: 10.1016/j.bpj.2012.02.026. Epub 2012 Mar 20.

14.

Tectorial membrane: a possible sharpening effect on the frequency analysis in the cochlea.

Zwislocki JJ.

Acta Otolaryngol. 1979 Mar-Apr;87(3-4):267-9.

PMID:
443008
15.

Chlorpromazine alters cochlear mechanics and amplification: in vivo evidence for a role of stiffness modulation in the organ of corti.

Zheng J, Deo N, Zou Y, Grosh K, Nuttall AL.

J Neurophysiol. 2007 Feb;97(2):994-1004. Epub 2006 Nov 22.

16.

Multiple modes of inner hair cell stimulation.

Mountain DC, Cody AR.

Hear Res. 1999 Jun;132(1-2):1-14.

PMID:
10392543
17.

Two types of cochlear hair cells with two different modes of activation are better than one.

Sohmer H.

J Basic Clin Physiol Pharmacol. 2012 Jan 11;23(1):1-3. doi: 10.1515/jbcpp-2011-0036. Review.

PMID:
22865443
18.
19.

Neuroplastin Isoform Np55 Is Expressed in the Stereocilia of Outer Hair Cells and Required for Normal Outer Hair Cell Function.

Zeng WZ, Grillet N, Dewey JB, Trouillet A, Krey JF, Barr-Gillespie PG, Oghalai JS, Müller U.

J Neurosci. 2016 Aug 31;36(35):9201-16. doi: 10.1523/JNEUROSCI.0093-16.2016.

20.

Power dissipation in the subtectorial space of the mammalian cochlea is modulated by inner hair cell stereocilia.

Prodanovic S, Gracewski S, Nam JH.

Biophys J. 2015 Feb 3;108(3):479-88. doi: 10.1016/j.bpj.2014.12.027.

Supplemental Content

Support Center