Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99


Prediction of therapy tumor-absorbed dose estimates in I-131 radioimmunotherapy using tracer data via a mixed-model fit to time activity.

Schipper MJ, Koral KF, Avram AM, Kaminski MS, Dewaraja YK.

Cancer Biother Radiopharm. 2012 Sep;27(7):403-11. doi: 10.1089/cbr.2011.1053.


Use of integrated SPECT/CT imaging for tumor dosimetry in I-131 radioimmunotherapy: a pilot patient study.

Dewaraja YK, Wilderman SJ, Koral KF, Kaminski MS, Avram AM.

Cancer Biother Radiopharm. 2009 Aug;24(4):417-26. doi: 10.1089/cbr.2008.0568.


Tumor-Absorbed Dose Predicts Progression-Free Survival Following (131)I-Tositumomab Radioimmunotherapy.

Dewaraja YK, Schipper MJ, Shen J, Smith LB, Murgic J, Savas H, Youssef E, Regan D, Wilderman SJ, Roberson PL, Kaminski MS, Avram AM.

J Nucl Med. 2014 Jul;55(7):1047-53. doi: 10.2967/jnumed.113.136044. Epub 2014 May 19.


131I-tositumomab radioimmunotherapy: initial tumor dose-response results using 3-dimensional dosimetry including radiobiologic modeling.

Dewaraja YK, Schipper MJ, Roberson PL, Wilderman SJ, Amro H, Regan DD, Koral KF, Kaminski MS, Avram AM.

J Nucl Med. 2010 Jul;51(7):1155-62. doi: 10.2967/jnumed.110.075176. Epub 2010 Jun 16.


Comparison of I-131 radioimmunotherapy tumor dosimetry: unit density sphere model versus patient-specific Monte Carlo calculations.

Howard DM, Kearfott KJ, Wilderman SJ, Dewaraja YK.

Cancer Biother Radiopharm. 2011 Oct;26(5):615-21. doi: 10.1089/cbr.2011.0965. Epub 2011 Sep 22.


Initial results for Hybrid SPECT--conjugate-view tumor dosimetry in 131I-anti-B1 antibody therapy of previously untreated patients with lymphoma.

Koral KF, Dewaraja Y, Li J, Barrett CL, Regan DD, Zasadny KR, Rommelfanger SG, Francis IR, Kaminski MS, Wahl RL.

J Nucl Med. 2000 Sep;41(9):1579-86.


Patient-specific, 3-dimensional dosimetry in non-Hodgkin's lymphoma patients treated with 131I-anti-B1 antibody: assessment of tumor dose-response.

Sgouros G, Squeri S, Ballangrud AM, Kolbert KS, Teitcher JB, Panageas KS, Finn RD, Divgi CR, Larson SM, Zelenetz AD.

J Nucl Med. 2003 Feb;44(2):260-8.


Biological-effect modeling of radioimmunotherapy for non-hodgkins lymphoma: determination of model parameters.

Roberson PL, Wilderman SJ, Avram AM, Kaminski MS, Schipper MJ, Dewaraja YK.

Cancer Biother Radiopharm. 2014 Feb;29(1):26-33. doi: 10.1089/cbr.2012.1467. Epub 2013 Oct 8.


Tumor-absorbed-dose estimates versus response in tositumomab therapy of previously untreated patients with follicular non-Hodgkin's lymphoma: preliminary report.

Koral KF, Dewaraja Y, Clarke LA, Li J, Zasadny KR, Rommelfanger SG, Francis IR, Kaminski MS, Wahl RL.

Cancer Biother Radiopharm. 2000 Aug;15(4):347-55.


Imaging, dosimetry, and radioimmunotherapy with iodine 131-labeled anti-CD37 antibody in B-cell lymphoma.

Kaminski MS, Fig LM, Zasadny KR, Koral KF, DelRosario RB, Francis IR, Hanson CA, Normolle DP, Mudgett E, Liu CP, et al.

J Clin Oncol. 1992 Nov;10(11):1696-711.


Update on hybrid conjugate-view SPECT tumor dosimetry and response in 131I-tositumomab therapy of previously untreated lymphoma patients.

Koral KF, Dewaraja Y, Li J, Lin Q, Regan DD, Zasadny KR, Rommelfanger SG, Francis IR, Kaminski MS, Wahl RL.

J Nucl Med. 2003 Mar;44(3):457-64.


Biodistribution and dosimetry results from a phase III prospectively randomized controlled trial of Zevalin radioimmunotherapy for low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma.

Wiseman GA, White CA, Sparks RB, Erwin WD, Podoloff DA, Lamonica D, Bartlett NL, Parker JA, Dunn WL, Spies SM, Belanger R, Witzig TE, Leigh BR.

Crit Rev Oncol Hematol. 2001 Jul-Aug;39(1-2):181-94.


Bio-effect model applied to 131I radioimmunotherapy of refractory non-Hodgkin's lymphoma.

Roberson PL, Amro H, Wilderman SJ, Avram AM, Kaminski MS, Schipper MJ, Dewaraja YK.

Eur J Nucl Med Mol Imaging. 2011 May;38(5):874-83. doi: 10.1007/s00259-010-1699-3. Epub 2010 Dec 21.


Myeloablative 131I-tositumomab radioimmunotherapy in treating non-Hodgkin's lymphoma: comparison of dosimetry based on whole-body retention and dose to critical organ receiving the highest dose.

Rajendran JG, Gopal AK, Fisher DR, Durack LD, Gooley TA, Press OW.

J Nucl Med. 2008 May;49(5):837-44. doi: 10.2967/jnumed.107.043190. Epub 2008 Apr 15.


Accurate dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation.

Dewaraja YK, Wilderman SJ, Ljungberg M, Koral KF, Zasadny K, Kaminiski MS.

J Nucl Med. 2005 May;46(5):840-9.


Three-step radioimmunotherapy with yttrium-90 biotin: dosimetry and pharmacokinetics in cancer patients.

Cremonesi M, Ferrari M, Chinol M, Stabin MG, Grana C, Prisco G, Robertson C, Tosi G, Paganelli G.

Eur J Nucl Med. 1999 Feb;26(2):110-20.


Dosimetric analysis of 177Lu-cG250 radioimmunotherapy in renal cell carcinoma patients: correlation with myelotoxicity and pretherapeutic absorbed dose predictions based on 111In-cG250 imaging.

Stillebroer AB, Zegers CM, Boerman OC, Oosterwijk E, Mulders PF, O'Donoghue JA, Visser EP, Oyen WJ.

J Nucl Med. 2012 Jan;53(1):82-9. doi: 10.2967/jnumed.111.094896. Epub 2011 Dec 12.


Comparison of residence time estimation methods for radioimmunotherapy dosimetry and treatment planning--Monte Carlo simulation studies.

He B, Wahl RL, Du Y, Sgouros G, Jacene H, Flinn I, Frey EC.

IEEE Trans Med Imaging. 2008 Apr;27(4):521-30. doi: 10.1109/TMI.2007.908131.

Supplemental Content

Support Center