Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 116

1.
2.

Droplet array on local redox cycling-based electrochemical (LRC-EC) chip device.

Ino K, Goto T, Kanno Y, Inoue KY, Takahashi Y, Shiku H, Matsue T.

Lab Chip. 2014 Feb 21;14(4):787-94. doi: 10.1039/c3lc51156a.

PMID:
24356747
3.

Electrochemical chip integrating scalable ring-ring electrode array to detect secreted alkaline phosphatase.

Takeda M, Shiku H, Ino K, Matsue T.

Analyst. 2011 Dec 7;136(23):4991-6. doi: 10.1039/c1an15620a.

PMID:
21977495
4.

Electrochemical gene-function analysis for single cells with addressable microelectrode/microwell arrays.

Lin Z, Takahashi Y, Murata T, Takeda M, Ino K, Shiku H, Matsue T.

Angew Chem Int Ed Engl. 2009;48(11):2044-6. doi: 10.1002/anie.200805743.

PMID:
19191275
5.

A new electrochemical assay method for gene expression using HeLa cells with a secreted alkaline phosphatase (SEAP) reporter system.

Şen M, Ino K, Shiku H, Matsue T.

Biotechnol Bioeng. 2012 Aug;109(8):2163-7. doi: 10.1002/bit.24461.

PMID:
22331791
6.

Electrochemical detection for dynamic analyses of a redox component in droplets using a local redox cycling-based electrochemical (LRC-EC) chip device.

Ino K, Kanno Y, Nishijo T, Goto T, Arai T, Takahashi Y, Shiku H, Matsue T.

Chem Commun (Camb). 2012 Sep 4;48(68):8505-7. doi: 10.1039/c2cc34264b.

PMID:
22810361
7.

Addressable electrode array device with IDA electrodes for high-throughput detection.

Ino K, Saito W, Koide M, Umemura T, Shiku H, Matsue T.

Lab Chip. 2011 Feb 7;11(3):385-8. doi: 10.1039/c0lc00437e.

PMID:
21152636
8.

Electrochemical monitoring of cellular signal transduction with a secreted alkaline phosphatase reporter system.

Torisawa YS, Ohara N, Nagamine K, Kasai S, Yasukawa T, Shiku H, Matsue T.

Anal Chem. 2006 Nov 15;78(22):7625-31.

PMID:
17105152
9.

Densified electrochemical sensors based on local redox cycling between vertically separated electrodes in substrate generation/chip collection and extended feedback modes.

Ino K, Kanno Y, Nishijo T, Komaki H, Yamada Y, Yoshida S, Takahashi Y, Shiku H, Matsue T.

Anal Chem. 2014 Apr 15;86(8):4016-23. doi: 10.1021/ac500435d.

PMID:
24621106
10.

A simple method to fabricate electrochemical sensor systems with predictable high-redox cycling amplification.

Straver MG, Odijk M, Olthuis W, van den Berg A.

Lab Chip. 2012 Apr 21;12(8):1548-53. doi: 10.1039/c2lc21233a.

PMID:
22361973
11.

A local redox cycling-based electrochemical chip device with nanocavities for multi-electrochemical evaluation of embryoid bodies.

Kanno Y, Ino K, Shiku H, Matsue T.

Lab Chip. 2015 Dec 7;15(23):4404-14. doi: 10.1039/c5lc01016k.

PMID:
26481771
12.

Optimization of an electrochemical DNA assay by using a 48-electrode array and redox amplification studies by means of scanning electrochemical microscopy.

Neugebauer S, Zimdars A, Liepold P, Gebala M, Schuhmann W, Hartwich G.

Chembiochem. 2009 May 4;10(7):1193-9. doi: 10.1002/cbic.200800767.

PMID:
19353601
13.

An addressable microelectrode array for electrochemical detection.

Lin Z, Takahashi Y, Kitagawa Y, Umemura T, Shiku H, Matsue T.

Anal Chem. 2008 Sep 1;80(17):6830-3. doi: 10.1021/ac801389d.

PMID:
18665613
14.

Electrochemical single-cell gene-expression assay combining dielectrophoretic manipulation with secreted alkaline phosphatase reporter system.

Murata T, Yasukawa T, Shiku H, Matsue T.

Biosens Bioelectron. 2009 Dec 15;25(4):913-9. doi: 10.1016/j.bios.2009.09.001.

PMID:
19775881
15.

Local redox-cycling-based electrochemical chip device with deep microwells for evaluation of embryoid bodies.

Ino K, Nishijo T, Arai T, Kanno Y, Takahashi Y, Shiku H, Matsue T.

Angew Chem Int Ed Engl. 2012 Jul 2;51(27):6648-52. doi: 10.1002/anie.201201602. No abstract available.

PMID:
22639109
16.

Electrochemical detection of high-sensitivity CRP inside a microfluidic device by numerical and experimental studies.

Lee G, Park I, Kwon K, Kwon T, Seo J, Chang WJ, Nam H, Cha GS, Choi MH, Yoon DS, Lee SW.

Biomed Microdevices. 2012 Apr;14(2):375-84. doi: 10.1007/s10544-011-9614-7.

PMID:
22143877
17.

Chemiluminescent reporter gene assays: sensitive detection of the GUS and SEAP gene products.

Bronstein I, Fortin JJ, Voyta JC, Juo RR, Edwards B, Olesen CE, Lijam N, Kricka LJ.

Biotechniques. 1994 Jul;17(1):172-4, 176-7.

PMID:
7946301
18.

Fuel cell-powered microfluidic platform for lab-on-a-chip applications: Integration into an autonomous amperometric sensing device.

Esquivel JP, Colomer-Farrarons J, Castellarnau M, Salleras M, del Campo FJ, Samitier J, Miribel-Català P, Sabaté N.

Lab Chip. 2012 Nov 7;12(21):4232-5. doi: 10.1039/c2lc40946a.

PMID:
22968667
19.

[Monitoring early toxicity of heavy metals including Hg using a HSE-SEAP reporter gene].

Yu ZJ, Yang Q, Yang XD, Wang K.

Zhongguo Zhong Yao Za Zhi. 2006 Aug;31(16):1346-9. Chinese.

PMID:
17061558
20.

Development of electrochemical reporter assay using HeLa cells transfected with vector plasmids encoding various responsive elements.

Shiku H, Takeda M, Murata T, Akiba U, Hamada F, Matsue T.

Anal Chim Acta. 2009 Apr 27;640(1-2):87-92. doi: 10.1016/j.aca.2009.03.018.

PMID:
19362625

Supplemental Content

Support Center