Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize.

Amiour N, Imbaud S, Clément G, Agier N, Zivy M, Valot B, Balliau T, Armengaud P, Quilleré I, Cañas R, Tercet-Laforgue T, Hirel B.

J Exp Bot. 2012 Sep;63(14):5017-33. doi: 10.1093/jxb/ers186.

PMID:
22936829
2.

An integrated "omics" approach to the characterization of maize (Zea mays L.) mutants deficient in the expression of two genes encoding cytosolic glutamine synthetase.

Amiour N, Imbaud S, Clément G, Agier N, Zivy M, Valot B, Balliau T, Quilleré I, Tercé-Laforgue T, Dargel-Graffin C, Hirel B.

BMC Genomics. 2014 Nov 20;15:1005. doi: 10.1186/1471-2164-15-1005.

3.

Nitrogen-use efficiency in maize (Zea mays L.): from 'omics' studies to metabolic modelling.

Simons M, Saha R, Guillard L, Clément G, Armengaud P, Cañas R, Maranas CD, Lea PJ, Hirel B.

J Exp Bot. 2014 Oct;65(19):5657-71. doi: 10.1093/jxb/eru227. Epub 2014 May 26. Review.

PMID:
24863438
4.

Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels.

Calderon-Vazquez C, Ibarra-Laclette E, Caballero-Perez J, Herrera-Estrella L.

J Exp Bot. 2008;59(9):2479-97. doi: 10.1093/jxb/ern115. Epub 2008 May 23.

PMID:
18503042
5.

Molecular and biochemical mechanisms in maize endosperm development: the role of pyruvate-Pi-dikinase and Opaque-2 in the control of C/N ratio.

Prioul JL, Méchin V, Damerval C.

C R Biol. 2008 Oct;331(10):772-9. doi: 10.1016/j.crvi.2008.07.019. Epub 2008 Sep 4. Review.

PMID:
18926491
6.

Comparison of two GM maize varieties with a near-isogenic non-GM variety using transcriptomics, proteomics and metabolomics.

Barros E, Lezar S, Anttonen MJ, van Dijk JP, Röhlig RM, Kok EJ, Engel KH.

Plant Biotechnol J. 2010 May 1;8(4):436-51. doi: 10.1111/j.1467-7652.2009.00487.x. Epub 2010 Feb 3.

7.
8.

An integrated statistical analysis of the genetic variability of nitrogen metabolism in the ear of three maize inbred lines (Zea mays L.).

Cañas RA, Amiour N, Quilleré I, Hirel B.

J Exp Bot. 2011 Apr;62(7):2309-18. doi: 10.1093/jxb/erq373. Epub 2010 Nov 26.

PMID:
21112957
9.

High throughput RNA sequencing of a hybrid maize and its parents shows different mechanisms responsive to nitrogen limitation.

Bi YM, Meyer A, Downs GS, Shi X, El-Kereamy A, Lukens L, Rothstein SJ.

BMC Genomics. 2014 Jan 28;15:77. doi: 10.1186/1471-2164-15-77.

10.

Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency.

Kant S, Bi YM, Rothstein SJ.

J Exp Bot. 2011 Feb;62(4):1499-509. doi: 10.1093/jxb/erq297. Epub 2010 Oct 6. Review.

PMID:
20926552
11.

Nitrogen metabolism in the developing ear of maize (Zea mays): analysis of two lines contrasting in their mode of nitrogen management.

Cañas RA, Quilleré I, Christ A, Hirel B.

New Phytol. 2009 Oct;184(2):340-52. doi: 10.1111/j.1469-8137.2009.02966.x. Epub 2009 Jul 27.

12.

Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize.

Yang XS, Wu J, Ziegler TE, Yang X, Zayed A, Rajani MS, Zhou D, Basra AS, Schachtman DP, Peng M, Armstrong CL, Caldo RA, Morrell JA, Lacy M, Staub JM.

Plant Physiol. 2011 Dec;157(4):1841-52. doi: 10.1104/pp.111.187898. Epub 2011 Oct 6.

13.

Nitrogen management and senescence in two maize hybrids differing in the persistence of leaf greenness: agronomic, physiological and molecular aspects.

Martin A, Belastegui-Macadam X, Quilleré I, Floriot M, Valadier MH, Pommel B, Andrieu B, Donnison I, Hirel B.

New Phytol. 2005 Aug;167(2):483-92.

14.

Proteomic analysis revealed nitrogen-mediated metabolic, developmental, and hormonal regulation of maize (Zea mays L.) ear growth.

Liao C, Peng Y, Ma W, Liu R, Li C, Li X.

J Exp Bot. 2012 Sep;63(14):5275-88. doi: 10.1093/jxb/ers187.

15.

A network perspective on nitrogen metabolism from model to crop plants using integrated 'omics' approaches.

Fukushima A, Kusano M.

J Exp Bot. 2014 Oct;65(19):5619-30. doi: 10.1093/jxb/eru322. Epub 2014 Aug 16. Review.

PMID:
25129130
16.

Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance.

Schlüter U, Colmsee C, Scholz U, Bräutigam A, Weber AP, Zellerhoff N, Bucher M, Fahnenstich H, Sonnewald U.

BMC Genomics. 2013 Jul 3;14:442. doi: 10.1186/1471-2164-14-442.

17.

Nitrogen under- and over-supply induces distinct protein responses in maize xylem sap.

Liao C, Liu R, Zhang F, Li C, Li X.

J Integr Plant Biol. 2012 Jun;54(6):374-87. doi: 10.1111/j.1744-7909.2012.01122.x.

PMID:
22501030
18.

Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis.

Schlüter U, Mascher M, Colmsee C, Scholz U, Bräutigam A, Fahnenstich H, Sonnewald U.

Plant Physiol. 2012 Nov;160(3):1384-406. doi: 10.1104/pp.112.204420. Epub 2012 Sep 12.

19.

Inhibition of nitrogen and photosynthetic carbon assimilation of maize seedlings by exposure to a combination of salt stress and potassium-deficient stress.

Qu C, Liu C, Ze Y, Gong X, Hong M, Wang L, Hong F.

Biol Trace Elem Res. 2011 Dec;144(1-3):1159-74. doi: 10.1007/s12011-011-9037-6. Epub 2011 Apr 1.

PMID:
21455705
20.

Differential gene expression analysis of maize leaf at heading stage in response to water-deficit stress.

Yue G, Zhuang Y, Li Z, Sun L, Zhang J.

Biosci Rep. 2008 Jun;28(3):125-34. doi: 10.1042/BSR20070023.

PMID:
18422487

Supplemental Content

Support Center