Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean.

Metcalf WW, Griffin BM, Cicchillo RM, Gao J, Janga SC, Cooke HA, Circello BT, Evans BS, Martens-Habbena W, Stahl DA, van der Donk WA.

Science. 2012 Aug 31;337(6098):1104-7. doi: 10.1126/science.1219875.

2.

Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria.

Carini P, White AE, Campbell EO, Giovannoni SJ.

Nat Commun. 2014 Jul 7;5:4346. doi: 10.1038/ncomms5346.

PMID:
25000228
3.

Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome.

Shi W, Moon CD, Leahy SC, Kang D, Froula J, Kittelmann S, Fan C, Deutsch S, Gagic D, Seedorf H, Kelly WJ, Atua R, Sang C, Soni P, Li D, Pinares-Patiño CS, McEwan JC, Janssen PH, Chen F, Visel A, Wang Z, Attwood GT, Rubin EM.

Genome Res. 2014 Sep;24(9):1517-25. doi: 10.1101/gr.168245.113. Epub 2014 Jun 6.

4.

Freshwater bacteria release methane as a byproduct of phosphorus acquisition.

Yao M, Henny C, Maresca JA.

Appl Environ Microbiol. 2016 Sep 30. pii: AEM.02399-16. [Epub ahead of print]

5.

Enrichment of a novel marine ammonia-oxidizing archaeon obtained from sand of an eelgrass zone.

Matsutani N, Nakagawa T, Nakamura K, Takahashi R, Yoshihara K, Tokuyama T.

Microbes Environ. 2011;26(1):23-9.

6.
7.

The catalytic mechanism for aerobic formation of methane by bacteria.

Kamat SS, Williams HJ, Dangott LJ, Chakrabarti M, Raushel FM.

Nature. 2013 May 2;497(7447):132-6. doi: 10.1038/nature12061. Epub 2013 Apr 24.

PMID:
23615610
8.

Molecular tools for investigating ANME community structure and function.

Hallam SJ, Pagé AP, Constan L, Song YC, Norbeck AD, Brewer H, Pasa-Tolic L.

Methods Enzymol. 2011;494:75-90. doi: 10.1016/B978-0-12-385112-3.00004-4.

PMID:
21402210
9.

Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments.

Glass JB, Yu H, Steele JA, Dawson KS, Sun S, Chourey K, Pan C, Hettich RL, Orphan VJ.

Environ Microbiol. 2014 Jun;16(6):1592-611. doi: 10.1111/1462-2920.12314. Epub 2013 Nov 14.

PMID:
24148160
10.

Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink.

Niemann H, Lösekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher JP, Boetius A.

Nature. 2006 Oct 19;443(7113):854-8.

PMID:
17051217
11.

Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces.

Béjà O, Koonin EV, Aravind L, Taylor LT, Seitz H, Stein JL, Bensen DC, Feldman RA, Swanson RV, DeLong EF.

Appl Environ Microbiol. 2002 Jan;68(1):335-45.

12.

Structural basis for methylphosphonate biosynthesis.

Born DA, Ulrich EC, Ju KS, Peck SC, van der Donk WA, Drennan CL.

Science. 2017 Dec 8;358(6368):1336-1339. doi: 10.1126/science.aao3435.

PMID:
29217579
13.

Metagenomic analysis of a complex marine planktonic thaumarchaeal community from the Gulf of Maine.

Tully BJ, Nelson WC, Heidelberg JF.

Environ Microbiol. 2012 Jan;14(1):254-67. doi: 10.1111/j.1462-2920.2011.02628.x. Epub 2011 Nov 3.

PMID:
22050608
14.

DEEP BIOSPHERE. Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor.

Inagaki F, Hinrichs KU, Kubo Y, Bowles MW, Heuer VB, Hong WL, Hoshino T, Ijiri A, Imachi H, Ito M, Kaneko M, Lever MA, Lin YS, Methé BA, Morita S, Morono Y, Tanikawa W, Bihan M, Bowden SA, Elvert M, Glombitza C, Gross D, Harrington GJ, Hori T, Li K, Limmer D, Liu CH, Murayama M, Ohkouchi N, Ono S, Park YS, Phillips SC, Prieto-Mollar X, Purkey M, Riedinger N, Sanada Y, Sauvage J, Snyder G, Susilawati R, Takano Y, Tasumi E, Terada T, Tomaru H, Trembath-Reichert E, Wang DT, Yamada Y.

Science. 2015 Jul 24;349(6246):420-4. doi: 10.1126/science.aaa6882. Epub 2015 Jul 23.

15.

Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments.

Orphan VJ, Hinrichs KU, Ussler W 3rd, Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong EF.

Appl Environ Microbiol. 2001 Apr;67(4):1922-34.

16.

Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea.

Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R.

Appl Environ Microbiol. 2007 May;73(10):3348-62. Epub 2007 Mar 16.

17.

Zero-valent sulphur is a key intermediate in marine methane oxidation.

Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MM.

Nature. 2012 Nov 22;491(7425):541-6. doi: 10.1038/nature11656. Epub 2012 Nov 7.

PMID:
23135396
18.

Mimicking the oxygen minimum zones: stimulating interaction of aerobic archaeal and anaerobic bacterial ammonia oxidizers in a laboratory-scale model system.

Yan J, Haaijer SC, Op den Camp HJ, van Niftrik L, Stahl DA, Könneke M, Rush D, Sinninghe Damsté JS, Hu YY, Jetten MS.

Environ Microbiol. 2012 Dec;14(12):3146-58. doi: 10.1111/j.1462-2920.2012.02894.x. Epub 2012 Oct 12.

19.

Reverse methanogenesis: testing the hypothesis with environmental genomics.

Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF.

Science. 2004 Sep 3;305(5689):1457-62.

20.

Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment.

Thomsen TR, Finster K, Ramsing NB.

Appl Environ Microbiol. 2001 Apr;67(4):1646-56.

Supplemental Content

Support Center