Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 125

1.

Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation.

Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo JH.

Environ Microbiol. 2013 Mar;15(3):848-864. doi: 10.1111/j.1462-2920.2012.02860.x. Epub 2012 Aug 30.

2.

Efficient colonization and harpins mediated enhancement in growth and biocontrol of wilt disease in tomato by Bacillus subtilis.

Gao S, Wu H, Wang W, Yang Y, Xie S, Xie Y, Gao X.

Lett Appl Microbiol. 2013 Dec;57(6):526-33. doi: 10.1111/lam.12144. Epub 2013 Sep 17.

3.

Antagonistic bacterium Bacillus amyloliquefaciens induces resistance and controls the bacterial wilt of tomato.

Tan S, Dong Y, Liao H, Huang J, Song S, Xu Y, Shen Q.

Pest Manag Sci. 2013 Nov;69(11):1245-52. doi: 10.1002/ps.3491. Epub 2013 Mar 20.

PMID:
23519834
4.

Characterization of antagonistic-potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato.

Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK.

J Basic Microbiol. 2015 Jan;55(1):82-90. doi: 10.1002/jobm.201300528. Epub 2013 Nov 26.

PMID:
24277414
5.

Ralstonia solanacearum requires PopS, an ancient AvrE-family effector, for virulence and To overcome salicylic acid-mediated defenses during tomato pathogenesis.

Jacobs JM, Milling A, Mitra RM, Hogan CS, Ailloud F, Prior P, Allen C.

MBio. 2013 Nov 26;4(6):e00875-13. doi: 10.1128/mBio.00875-13.

7.
8.

Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum.

Raza W, Wang J, Wu Y, Ling N, Wei Z, Huang Q, Shen Q.

Appl Microbiol Biotechnol. 2016 Sep;100(17):7639-50. doi: 10.1007/s00253-016-7584-7. Epub 2016 May 17.

PMID:
27183998
9.

Bacillus thuringiensis suppresses bacterial wilt disease caused by Ralstonia solanacearum with systemic induction of defense-related gene expression in tomato.

Hyakumachi M, Nishimura M, Arakawa T, Asano S, Yoshida S, Tsushima S, Takahashi H.

Microbes Environ. 2013;28(1):128-34. Epub 2012 Dec 19.

10.

Isolation and screening of phlD (+) plant growth promoting rhizobacteria antagonistic to Ralstonia solanacearum.

Ramadasappa S, Rai AK, Jaat RS, Singh A, Rai R.

World J Microbiol Biotechnol. 2012 Apr;28(4):1681-90. doi: 10.1007/s11274-011-0975-0. Epub 2011 Dec 14.

PMID:
22805950
11.
12.

A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants.

Chen Y, Cao S, Chai Y, Clardy J, Kolter R, Guo JH, Losick R.

Mol Microbiol. 2012 Aug;85(3):418-30. doi: 10.1111/j.1365-2958.2012.08109.x. Epub 2012 Jun 20.

13.

Colonization of Pythium oligandrum in the tomato rhizosphere for biological control of bacterial wilt disease analyzed by real-time PCR and confocal laser-scanning microscopy.

Takenaka S, Sekiguchi H, Nakaho K, Tojo M, Masunaka A, Takahashi H.

Phytopathology. 2008 Feb;98(2):187-95. doi: 10.1094/PHYTO-98-2-0187.

14.

Rhizocompetence and antagonistic activity towards genetically diverse Ralstonia solanacearum strains--an improved strategy for selecting biocontrol agents.

Xue QY, Ding GC, Li SM, Yang Y, Lan CZ, Guo JH, Smalla K.

Appl Microbiol Biotechnol. 2013 Feb;97(3):1361-71. doi: 10.1007/s00253-012-4021-4. Epub 2012 Apr 11.

PMID:
22526784
15.

Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

Adam M, Heuer H, Hallmann J.

PLoS One. 2014 Feb 28;9(2):e90402. doi: 10.1371/journal.pone.0090402. eCollection 2014.

16.

The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato.

Jacobs JM, Babujee L, Meng F, Milling A, Allen C.

MBio. 2012 Aug 31;3(4). pii: e00114-12. doi: 10.1128/mBio.00114-12. Print 2012.

17.

Ralstonia solanacearum Dps contributes to oxidative stress tolerance and to colonization of and virulence on tomato plants.

Colburn-Clifford JM, Scherf JM, Allen C.

Appl Environ Microbiol. 2010 Nov;76(22):7392-9. doi: 10.1128/AEM.01742-10. Epub 2010 Sep 24.

18.

Characterization and evaluation of Bacillus amyloliquefaciens strain WF02 regarding its biocontrol activities and genetic responses against bacterial wilt in two different resistant tomato cultivars.

Huang CN, Lin CP, Hsieh FC, Lee SK, Cheng KC, Liu CT.

World J Microbiol Biotechnol. 2016 Nov;32(11):183. doi: 10.1007/s11274-016-2143-z. Epub 2016 Sep 19.

PMID:
27646210
19.

Native soil bacteria isolates in Mexico exhibit a promising antagonistic effect against Fusarium oxysporum f. sp. radicis-lycopersici.

Cordero-Ramírez JD, López-Rivera R, Figueroa-Lopez AM, Mancera-López ME, Martínez-Álvarez JC, Apodaca-Sánchez MÁ, Maldonado-Mendoza IE.

J Basic Microbiol. 2013 Oct;53(10):838-47. doi: 10.1002/jobm.201200128. Epub 2013 Feb 18.

PMID:
23417777
20.

A polyphasic approach for studying the interaction between Ralstonia solanacearum and potential control agents in the tomato phytosphere.

van Overbeek LS, Cassidy M, Kozdroj J, Trevors JT, van Elsas JD.

J Microbiol Methods. 2002 Jan;48(1):69-86.

PMID:
11733083

Supplemental Content

Support Center