Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

Structural insight into the mechanism of oxygen activation and substrate selectivity of flavin-dependent N-hydroxylating monooxygenases.

Franceschini S, Fedkenheuer M, Vogelaar NJ, Robinson HH, Sobrado P, Mattevi A.

Biochemistry. 2012 Sep 11;51(36):7043-5. Epub 2012 Aug 30.

PMID:
22928747
2.

Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA.

Robinson R, Franceschini S, Fedkenheuer M, Rodriguez PJ, Ellerbrock J, Romero E, Echandi MP, Martin Del Campo JS, Sobrado P.

Biochim Biophys Acta. 2014 Apr;1844(4):778-84. doi: 10.1016/j.bbapap.2014.02.005. Epub 2014 Feb 15.

PMID:
24534646
3.

Aspergillus fumigatus SidA is a highly specific ornithine hydroxylase with bound flavin cofactor.

Chocklett SW, Sobrado P.

Biochemistry. 2010 Aug 10;49(31):6777-83. doi: 10.1021/bi100291n.

PMID:
20614882
4.

Role of Ser-257 in the sliding mechanism of NADP(H) in the reaction catalyzed by the Aspergillus fumigatus flavin-dependent ornithine N5-monooxygenase SidA.

Shirey C, Badieyan S, Sobrado P.

J Biol Chem. 2013 Nov 8;288(45):32440-8. doi: 10.1074/jbc.M113.487181. Epub 2013 Sep 26.

5.

Mechanism of N-hydroxylation catalyzed by flavin-dependent monooxygenases.

Badieyan S, Bach RD, Sobrado P.

J Org Chem. 2015 Feb 20;80(4):2139-47. doi: 10.1021/jo502651v. Epub 2015 Feb 11.

PMID:
25633869
6.

Comprehensive spectroscopic, steady state, and transient kinetic studies of a representative siderophore-associated flavin monooxygenase.

Mayfield JA, Frederick RE, Streit BR, Wencewicz TA, Ballou DP, DuBois JL.

J Biol Chem. 2010 Oct 1;285(40):30375-88. doi: 10.1074/jbc.M110.157578. Epub 2010 Jul 22.

7.

Contribution to catalysis of ornithine binding residues in ornithine N5-monooxygenase.

Robinson R, Qureshi IA, Klancher CA, Rodriguez PJ, Tanner JJ, Sobrado P.

Arch Biochem Biophys. 2015 Nov 1;585:25-31. doi: 10.1016/j.abb.2015.09.008. Epub 2015 Sep 12.

PMID:
26375201
8.

C4a-hydroperoxyflavin formation in N-hydroxylating flavin monooxygenases is mediated by the 2'-OH of the nicotinamide ribose of NADPÔü║.

Robinson R, Badieyan S, Sobrado P.

Biochemistry. 2013 Dec 23;52(51):9089-91. doi: 10.1021/bi4014903. Epub 2013 Dec 12.

PMID:
24321106
9.

Regulated O2 activation in flavin-dependent monooxygenases.

Frederick RE, Mayfield JA, DuBois JL.

J Am Chem Soc. 2011 Aug 17;133(32):12338-41. doi: 10.1021/ja203397s. Epub 2011 Jul 26.

10.

Dual role of NADP(H) in the reaction of a flavin dependent N-hydroxylating monooxygenase.

Romero E, Fedkenheuer M, Chocklett SW, Qi J, Oppenheimer M, Sobrado P.

Biochim Biophys Acta. 2012 Jun;1824(6):850-7. doi: 10.1016/j.bbapap.2012.03.004. Epub 2012 Mar 27.

PMID:
22465572
11.

Monitoring the reductive and oxidative half-reactions of a flavin-dependent monooxygenase using stopped-flow spectrophotometry.

Romero E, Robinson R, Sobrado P.

J Vis Exp. 2012 Mar 18;(61). pii: 3803. doi: 10.3791/3803.

12.

Control of catalysis in flavin-dependent monooxygenases.

Palfey BA, McDonald CA.

Arch Biochem Biophys. 2010 Jan 1;493(1):26-36. doi: 10.1016/j.abb.2009.11.028. Epub 2009 Nov 26. Review.

PMID:
19944667
13.

Mechanistic and structural studies of the N-hydroxylating flavoprotein monooxygenases.

Olucha J, Lamb AL.

Bioorg Chem. 2011 Dec;39(5-6):171-7. doi: 10.1016/j.bioorg.2011.07.006. Epub 2011 Aug 5. Review.

14.

Kinetic mechanism of ornithine hydroxylase (PvdA) from Pseudomonas aeruginosa: substrate triggering of O2 addition but not flavin reduction.

Meneely KM, Barr EW, Bollinger JM Jr, Lamb AL.

Biochemistry. 2009 May 26;48(20):4371-6. doi: 10.1021/bi900442z.

16.

An unprecedented NADPH domain conformation in lysine monooxygenase NbtG provides insights into uncoupling of oxygen consumption from substrate hydroxylation.

Binda C, Robinson RM, Martin Del Campo JS, Keul ND, Rodriguez PJ, Robinson HH, Mattevi A, Sobrado P.

J Biol Chem. 2015 May 15;290(20):12676-88. doi: 10.1074/jbc.M114.629485. Epub 2015 Mar 23.

17.

Flavin dependent monooxygenases.

Huijbers MM, Montersino S, Westphal AH, Tischler D, van Berkel WJ.

Arch Biochem Biophys. 2014 Feb 15;544:2-17. doi: 10.1016/j.abb.2013.12.005. Epub 2013 Dec 17. Review.

PMID:
24361254
18.

Two structures of an N-hydroxylating flavoprotein monooxygenase: ornithine hydroxylase from Pseudomonas aeruginosa.

Olucha J, Meneely KM, Chilton AS, Lamb AL.

J Biol Chem. 2011 Sep 9;286(36):31789-98. doi: 10.1074/jbc.M111.265876. Epub 2011 Jul 13.

19.

Insights in the kinetic mechanism of the eukaryotic Baeyer-Villiger monooxygenase BVMOAf1 from Aspergillus fumigatus Af293.

Mascotti ML, Kurina-Sanz M, Juri Ayub M, Fraaije MW.

Biochimie. 2014 Dec;107 Pt B:270-6. doi: 10.1016/j.biochi.2014.09.005. Epub 2014 Sep 16.

PMID:
25230086
20.

Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.

Ballou DP, Entsch B, Cole LJ.

Biochem Biophys Res Commun. 2005 Dec 9;338(1):590-8. Epub 2005 Sep 26. Review.

PMID:
16236251

Supplemental Content

Support Center