Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

Poly-gene fusion transcripts and chromothripsis in prostate cancer.

Wu C, Wyatt AW, McPherson A, Lin D, McConeghy BJ, Mo F, Shukin R, Lapuk AV, Jones SJ, Zhao Y, Marra MA, Gleave ME, Volik SV, Wang Y, Sahinalp SC, Collins CC.

Genes Chromosomes Cancer. 2012 Dec;51(12):1144-53. doi: 10.1002/gcc.21999. Epub 2012 Aug 25.

PMID:
22927308
2.

Gene fusions by chromothripsis of chromosome 5q in the VCaP prostate cancer cell line.

Teles Alves I, Hiltemann S, Hartjes T, van der Spek P, Stubbs A, Trapman J, Jenster G.

Hum Genet. 2013 Jun;132(6):709-13. doi: 10.1007/s00439-013-1308-1. Epub 2013 Apr 25.

PMID:
23615946
3.

Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer.

Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS, Menon A, Jing X, Cao Q, Han B, Yu J, Wang L, Montie JE, Rubin MA, Pienta KJ, Roulston D, Shah RB, Varambally S, Mehra R, Chinnaiyan AM.

Nature. 2007 Aug 2;448(7153):595-9.

4.

Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer.

Kloosterman WP, Hoogstraat M, Paling O, Tavakoli-Yaraki M, Renkens I, Vermaat JS, van Roosmalen MJ, van Lieshout S, Nijman IJ, Roessingh W, van 't Slot R, van de Belt J, Guryev V, Koudijs M, Voest E, Cuppen E.

Genome Biol. 2011 Oct 19;12(10):R103. doi: 10.1186/gb-2011-12-10-r103.

5.

Chromothripsis in congenital disorders and cancer: similarities and differences.

Kloosterman WP, Cuppen E.

Curr Opin Cell Biol. 2013 Jun;25(3):341-8. doi: 10.1016/j.ceb.2013.02.008. Epub 2013 Mar 13. Review.

PMID:
23478216
6.

In Brief: Chromothripsis and cancer.

Wyatt AW, Collins CC.

J Pathol. 2013 Sep;231(1):1-3. doi: 10.1002/path.4220.

PMID:
23744564
7.

Prevalence and clinical implications of chromothripsis in cancer genomes.

Kloosterman WP, Koster J, Molenaar JJ.

Curr Opin Oncol. 2014 Jan;26(1):64-72. doi: 10.1097/CCO.0000000000000038. Review.

PMID:
24305569
8.

Overexpression of full-length ETV1 transcripts in clinical prostate cancer due to gene translocation.

Gasi D, van der Korput HA, Douben HC, de Klein A, de Ridder CM, van Weerden WM, Trapman J.

PLoS One. 2011 Jan 26;6(1):e16332. doi: 10.1371/journal.pone.0016332.

9.

p53 abnormalities in primary prostate cancer: single-strand conformation polymorphism analysis of complementary DNA in comparison with genomic DNA. The Cooperative Prostate Network.

Gumerlock PH, Chi SG, Shi XB, Voeller HJ, Jacobson JW, Gelmann EP, deVere White RW.

J Natl Cancer Inst. 1997 Jan 1;89(1):66-71.

PMID:
8978408
10.

The Diverse Effects of Complex Chromosome Rearrangements and Chromothripsis in Cancer Development.

de Pagter MS, Kloosterman WP.

Recent Results Cancer Res. 2015;200:165-93. doi: 10.1007/978-3-319-20291-4_8. Review.

PMID:
26376877
11.

Chromosomal catastrophe is a frequent event in clinically insignificant prostate cancer.

Kovtun IV, Murphy SJ, Johnson SH, Cheville JC, Vasmatzis G.

Oncotarget. 2015 Oct 6;6(30):29087-96. doi: 10.18632/oncotarget.4900.

12.

Correlating breakage-fusion-bridge events with the overall chromosomal instability and in vitro karyotype evolution in prostate cancer.

Vukovic B, Beheshti B, Park P, Lim G, Bayani J, Zielenska M, Squire JA.

Cytogenet Genome Res. 2007;116(1-2):1-11.

PMID:
17268171
13.

Chromothripsis in cancer cells: An update.

Rode A, Maass KK, Willmund KV, Lichter P, Ernst A.

Int J Cancer. 2016 May 15;138(10):2322-33. doi: 10.1002/ijc.29888. Epub 2015 Oct 30. Review.

14.

Androgen regulation of ETS gene fusion transcripts in prostate cancer.

Gasi D, Trapman J.

Methods Mol Biol. 2011;776:335-48. doi: 10.1007/978-1-61779-243-4_19.

PMID:
21796535
15.

Overexpression of prostate-specific TMPRSS2(exon 0)-ERG fusion transcripts corresponds with favorable prognosis of prostate cancer.

Hermans KG, Boormans JL, Gasi D, van Leenders GJ, Jenster G, Verhagen PC, Trapman J.

Clin Cancer Res. 2009 Oct 15;15(20):6398-403. doi: 10.1158/1078-0432.CCR-09-1176. Epub 2009 Oct 13.

16.

The genomic characteristics and cellular origin of chromothripsis.

Storchov√° Z, Kloosterman WP.

Curr Opin Cell Biol. 2016 Jun;40:106-113. doi: 10.1016/j.ceb.2016.03.003. Epub 2016 Mar 26. Review.

PMID:
27023493
17.

Unique substitution of CHEK2 and TP53 mutations implicated in primary prostate tumors and cancer cell lines.

Zheng L, Wang F, Qian C, Neumann RM, Cheville JC, Tindall DJ, Liu W.

Hum Mutat. 2006 Oct;27(10):1062-3.

PMID:
16941491
18.

Fragile histidine triad gene expression in primary prostate cancer and in an in vitro model.

Guo Z, Johansson SL, Rhim JS, Vishwanatha JK.

Prostate. 2000 May 1;43(2):101-10.

PMID:
10754525
19.

Comrad: detection of expressed rearrangements by integrated analysis of RNA-Seq and low coverage genome sequence data.

McPherson A, Wu C, Hajirasouliha I, Hormozdiari F, Hach F, Lapuk A, Volik S, Shah S, Collins C, Sahinalp SC.

Bioinformatics. 2011 Jun 1;27(11):1481-8. doi: 10.1093/bioinformatics/btr184. Epub 2011 Apr 9.

PMID:
21478487

Supplemental Content

Support Center