Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 171

1.

Why Do SGLT2 inhibitors inhibit only 30-50% of renal glucose reabsorption in humans?

Liu JJ, Lee T, DeFronzo RA.

Diabetes. 2012 Sep;61(9):2199-204. doi: 10.2337/db12-0052.

2.

Glucose dynamics and mechanistic implications of SGLT2 inhibitors in animals and humans.

List JF, Whaley JM.

Kidney Int Suppl. 2011 Mar;(120):S20-7. doi: 10.1038/ki.2010.512. Review.

PMID:
21358698
3.

In vitro-in vivo correlation of the inhibition potency of sodium-glucose cotransporter inhibitors in rat: a pharmacokinetic and pharmacodynamic modeling approach.

Yamaguchi K, Kato M, Suzuki M, Hagita H, Takada M, Ayabe M, Aso Y, Ishigai M, Ikeda S.

J Pharmacol Exp Ther. 2013 Apr;345(1):52-61. doi: 10.1124/jpet.113.203125. Epub 2013 Feb 5.

4.

Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level.

Katsuno K, Fujimori Y, Takemura Y, Hiratochi M, Itoh F, Komatsu Y, Fujikura H, Isaji M.

J Pharmacol Exp Ther. 2007 Jan;320(1):323-30. Epub 2006 Oct 18.

5.

Safety, pharmacokinetic, and pharmacodynamic profiles of ipragliflozin (ASP1941), a novel and selective inhibitor of sodium-dependent glucose co-transporter 2, in patients with type 2 diabetes mellitus.

Schwartz SL, Akinlade B, Klasen S, Kowalski D, Zhang W, Wilpshaar W.

Diabetes Technol Ther. 2011 Dec;13(12):1219-27. doi: 10.1089/dia.2011.0012. Epub 2011 Aug 19.

PMID:
21854192
6.

Ipragliflozin and other sodium-glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: preclinical and clinical data.

Kurosaki E, Ogasawara H.

Pharmacol Ther. 2013 Jul;139(1):51-9. doi: 10.1016/j.pharmthera.2013.04.003. Epub 2013 Apr 4. Review.

PMID:
23563279
7.

Selective SGLT2 inhibition by tofogliflozin reduces renal glucose reabsorption under hyperglycemic but not under hypo- or euglycemic conditions in rats.

Nagata T, Fukazawa M, Honda K, Yata T, Kawai M, Yamane M, Murao N, Yamaguchi K, Kato M, Mitsui T, Suzuki Y, Ikeda S, Kawabe Y.

Am J Physiol Endocrinol Metab. 2013 Feb 15;304(4):E414-23. doi: 10.1152/ajpendo.00545.2012. Epub 2012 Dec 18.

8.

Sodium glucose cotransporter 2 and the diabetic kidney.

Komala MG, Panchapakesan U, Pollock C, Mather A.

Curr Opin Nephrol Hypertens. 2013 Jan;22(1):113-9. doi: 10.1097/MNH.0b013e32835a17ae. Review.

PMID:
23042029
9.

SGLT2 inhibition with dapagliflozin -- a novel approach for the management of type 2 diabetes.

Kilov G, Leow S, Thomas M.

Aust Fam Physician. 2013 Oct;42(10):706-10. Review.

10.

Effects of SGLT2 inhibition in human kidney proximal tubular cells--renoprotection in diabetic nephropathy?

Panchapakesan U, Pegg K, Gross S, Komala MG, Mudaliar H, Forbes J, Pollock C, Mather A.

PLoS One. 2013;8(2):e54442. doi: 10.1371/journal.pone.0054442. Epub 2013 Feb 4.

11.

Sodium-glucose cotransporter inhibition: therapeutic potential for the treatment of type 2 diabetes mellitus.

Raskin P.

Diabetes Metab Res Rev. 2013 Jul;29(5):347-56. doi: 10.1002/dmrr.2403. Review.

PMID:
23463735
12.
13.

Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans.

Abdul-Ghani MA, DeFronzo RA, Norton L.

Diabetes. 2013 Oct;62(10):3324-8. doi: 10.2337/db13-0604.

14.

Sodium glucose co-transporter 2 inhibitors: blocking renal tubular reabsorption of glucose to improve glycaemic control in patients with diabetes.

Jabbour SA, Goldstein BJ.

Int J Clin Pract. 2008 Aug;62(8):1279-84. doi: 10.1111/j.1742-1241.2008.01829.x. Review.

PMID:
18705823
15.

Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences.

Gallo LA, Wright EM, Vallon V.

Diab Vasc Dis Res. 2015 Mar;12(2):78-89. doi: 10.1177/1479164114561992. Epub 2015 Jan 23. Review.

PMID:
25616707
16.

Pharmacological profile of ipragliflozin (ASP1941), a novel selective SGLT2 inhibitor, in vitro and in vivo.

Tahara A, Kurosaki E, Yokono M, Yamajuku D, Kihara R, Hayashizaki Y, Takasu T, Imamura M, Qun L, Tomiyama H, Kobayashi Y, Noda A, Sasamata M, Shibasaki M.

Naunyn Schmiedebergs Arch Pharmacol. 2012 Apr;385(4):423-36. doi: 10.1007/s00210-011-0713-z. Epub 2011 Dec 3.

PMID:
22139434
17.

Tofogliflozin, a potent and highly specific sodium/glucose cotransporter 2 inhibitor, improves glycemic control in diabetic rats and mice.

Suzuki M, Honda K, Fukazawa M, Ozawa K, Hagita H, Kawai T, Takeda M, Yata T, Kawai M, Fukuzawa T, Kobayashi T, Sato T, Kawabe Y, Ikeda S.

J Pharmacol Exp Ther. 2012 Jun;341(3):692-701. doi: 10.1124/jpet.112.191593. Epub 2012 Mar 12.

18.

SGLT2 inhibitors to control glycemia in type 2 diabetes mellitus: a new approach to an old problem.

Jabbour SA.

Postgrad Med. 2014 Jan;126(1):111-7. doi: 10.3810/pgm.2014.01.2731. Review.

PMID:
24393758
19.

Pharmacodynamic model of sodium-glucose transporter 2 (SGLT2) inhibition: implications for quantitative translational pharmacology.

Maurer TS, Ghosh A, Haddish-Berhane N, Sawant-Basak A, Boustany-Kari CM, She L, Leininger MT, Zhu T, Tugnait M, Yang X, Kimoto E, Mascitti V, Robinson RP.

AAPS J. 2011 Dec;13(4):576-84. doi: 10.1208/s12248-011-9297-2. Epub 2011 Aug 26.

20.

[Sodium-glucose cotransporter type 2 inhibitors (SGLT2): from familial renal glucosuria to the treatment of type 2 diabetes mellitus].

Pérez López G, González Albarrán O, Cano Megías M.

Nefrologia. 2010;30(6):618-25. doi: 10.3265/Nefrologia.pre2010.Sep.10494. Review. Spanish.

Supplemental Content

Support Center