Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 129

1.

Increased expression of β-glucosidase A in Clostridium thermocellum 27405 significantly increases cellulase activity.

Maki ML, Armstrong L, Leung KT, Qin W.

Bioengineered. 2013 Jan-Feb;4(1):15-20. doi: 10.4161/bioe.21951. Epub 2012 Aug 24.

2.

Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase.

Kim S, Baek SH, Lee K, Hahn JS.

Microb Cell Fact. 2013 Feb 5;12:14. doi: 10.1186/1475-2859-12-14.

3.

Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome.

Gefen G, Anbar M, Morag E, Lamed R, Bayer EA.

Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10298-303. doi: 10.1073/pnas.1202747109. Epub 2012 Jun 11.

4.

Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera beta-glucosidase genes.

Jeon E, Hyeon JE, Suh DJ, Suh YW, Kim SW, Song KH, Han SO.

Mol Cells. 2009 Oct 31;28(4):369-73. doi: 10.1007/s10059-009-0131-y. Epub 2009 Sep 30.

5.

Co-transcription of the celC gene cluster in Clostridium thermocellum.

Newcomb M, Millen J, Chen CY, Wu JH.

Appl Microbiol Biotechnol. 2011 Apr;90(2):625-34. doi: 10.1007/s00253-011-3121-x. Epub 2011 Feb 12.

PMID:
21318364
6.
7.

Growth and expression of relevant metabolic genes of Clostridium thermocellum cultured on lignocellulosic residues.

Leitão VO, Noronha EF, Camargo BR, Hamann PRV, Steindorff AS, Quirino BF, de Sousa MV, Ulhoa CJ, Felix CR.

J Ind Microbiol Biotechnol. 2017 Jun;44(6):825-834. doi: 10.1007/s10295-017-1915-2. Epub 2017 Feb 8.

PMID:
28181082
9.

Cellulosic ethanol production by combination of cellulase-displaying yeast cells.

Baek SH, Kim S, Lee K, Lee JK, Hahn JS.

Enzyme Microb Technol. 2012 Dec 10;51(6-7):366-72. doi: 10.1016/j.enzmictec.2012.08.005. Epub 2012 Aug 23.

PMID:
23040393
10.

Demonstration of the importance for cellulose hydrolysis of CelS, the most abundant cellulosomal cellulase in Clostridium thermocellum [corrected].

Wilson DB.

Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):17855-6. doi: 10.1073/pnas.1012746107. Epub 2010 Oct 4. No abstract available. Erratum in: Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20144.

11.

Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities.

Xu Q, Resch MG, Podkaminer K, Yang S, Baker JO, Donohoe BS, Wilson C, Klingeman DM, Olson DG, Decker SR, Giannone RJ, Hettich RL, Brown SD, Lynd LR, Bayer EA, Himmel ME, Bomble YJ.

Sci Adv. 2016 Feb 5;2(2):e1501254. doi: 10.1126/sciadv.1501254. eCollection 2016 Feb.

12.

LacI Transcriptional Regulatory Networks in Clostridium thermocellum DSM1313.

Wilson CM, Klingeman DM, Schlachter C, Syed MH, Wu CW, Guss AM, Brown SD.

Appl Environ Microbiol. 2017 Feb 15;83(5). pii: e02751-16. doi: 10.1128/AEM.02751-16. Print 2017 Mar 1.

13.

Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.

Papanek B, Biswas R, Rydzak T, Guss AM.

Metab Eng. 2015 Nov;32:49-54. doi: 10.1016/j.ymben.2015.09.002. Epub 2015 Sep 12.

PMID:
26369438
14.

Glutamate production from β-glucan using endoglucanase-secreting Corynebacterium glutamicum.

Tsuchidate T, Tateno T, Okai N, Tanaka T, Ogino C, Kondo A.

Appl Microbiol Biotechnol. 2011 May;90(3):895-901. doi: 10.1007/s00253-011-3116-7. Epub 2011 Feb 9.

PMID:
21305281
15.

Global gene expression patterns in Clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose.

Riederer A, Takasuka TE, Makino S, Stevenson DM, Bukhman YV, Elsen NL, Fox BG.

Appl Environ Microbiol. 2011 Feb;77(4):1243-53. doi: 10.1128/AEM.02008-10. Epub 2010 Dec 17.

16.

Enhanced hydrolysis of lignocellulosic biomass: Bi-functional enzyme complexes expressed in Pichia pastoris improve bioethanol production from Miscanthus sinensis.

Shin SK, Hyeon JE, Kim YI, Kang DH, Kim SW, Park C, Han SO.

Biotechnol J. 2015 Dec;10(12):1912-9. doi: 10.1002/biot.201500081. Epub 2015 Nov 11.

PMID:
26479167
18.

Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum.

Biswas R, Prabhu S, Lynd LR, Guss AM.

PLoS One. 2014 Feb 7;9(2):e86389. doi: 10.1371/journal.pone.0086389. eCollection 2014.

19.

Efficient saccharification of ammonia soaked rice straw by combination of Clostridium thermocellum cellulosome and Thermoanaerobacter brockii β-glucosidase.

Waeonukul R, Kosugi A, Tachaapaikoon C, Pason P, Ratanakhanokchai K, Prawitwong P, Deng L, Saito M, Mori Y.

Bioresour Technol. 2012 Mar;107:352-7. doi: 10.1016/j.biortech.2011.12.126. Epub 2012 Jan 2.

PMID:
22257861
20.

Development and characterization of membrane surface display system using molecular chaperon, prsA, of Bacillus subtilis.

Kim JH, Park IS, Kim BG.

Biochem Biophys Res Commun. 2005 Sep 9;334(4):1248-53.

PMID:
16051192

Supplemental Content

Support Center