Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Role of nanoparticle surface functionality in the disruption of model cell membranes.

Moghadam BY, Hou WC, Corredor C, Westerhoff P, Posner JD.

Langmuir. 2012 Nov 27;28(47):16318-26. doi: 10.1021/la302654s. Epub 2012 Sep 6.

2.

Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes.

Hou WC, Moghadam BY, Corredor C, Westerhoff P, Posner JD.

Environ Sci Technol. 2012 Feb 7;46(3):1869-76. doi: 10.1021/es203661k. Epub 2012 Jan 30.

PMID:
22242832
3.

Native silica nanoparticles are powerful membrane disruptors.

Alkhammash HI, Li N, Berthier R, de Planque MR.

Phys Chem Chem Phys. 2015 Jun 28;17(24):15547-60. doi: 10.1039/c4cp05882h. Epub 2015 Jan 27.

PMID:
25623776
4.

Coverage and disruption of phospholipid membranes by oxide nanoparticles.

Pera H, Nolte TM, Leermakers FA, Kleijn JM.

Langmuir. 2014 Dec 9;30(48):14581-90. doi: 10.1021/la503413w. Epub 2014 Nov 21.

PMID:
25390582
5.

Combining reflectometry and fluorescence microscopy: an assay for the investigation of leakage processes across lipid membranes.

Stephan M, Mey I, Steinem C, Janshoff A.

Anal Chem. 2014 Feb 4;86(3):1366-71. doi: 10.1021/ac4020726. Epub 2014 Jan 10.

PMID:
24377291
6.

Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37.

Thennarasu S, Tan A, Penumatchu R, Shelburne CE, Heyl DL, Ramamoorthy A.

Biophys J. 2010 Jan 20;98(2):248-57. doi: 10.1016/j.bpj.2009.09.060.

7.

Effect of lipid headgroup composition on the interaction between melittin and lipid bilayers.

Strömstedt AA, Wessman P, Ringstad L, Edwards K, Malmsten M.

J Colloid Interface Sci. 2007 Jul 1;311(1):59-69. Epub 2007 Mar 2.

PMID:
17383670
8.

Surface charge dependent nanoparticle disruption and deposition of lipid bilayer assemblies.

Xiao X, Montaño GA, Edwards TL, Allen A, Achyuthan KE, Polsky R, Wheeler DR, Brozik SM.

Langmuir. 2012 Dec 18;28(50):17396-403. doi: 10.1021/la303300b. Epub 2012 Dec 4.

PMID:
23163515
9.

Quantifying the effects of melittin on liposomes.

Popplewell JF, Swann MJ, Freeman NJ, McDonnell C, Ford RC.

Biochim Biophys Acta. 2007 Jan;1768(1):13-20. Epub 2006 May 23.

10.

Freezing or wrapping: the role of particle size in the mechanism of nanoparticle-biomembrane interaction.

Zhang S, Nelson A, Beales PA.

Langmuir. 2012 Sep 4;28(35):12831-7. doi: 10.1021/la301771b. Epub 2012 Jul 17.

PMID:
22717012
11.

Vesicle deposition and subsequent membrane-melittin interactions on different substrates: a QCM-D experiment.

Lu NY, Yang K, Li JL, Yuan B, Ma YQ.

Biochim Biophys Acta. 2013 Aug;1828(8):1918-25. doi: 10.1016/j.bbamem.2013.04.013. Epub 2013 Apr 20.

12.

The effect of high intensity ultrasound on the loading of Au nanoparticles into titanium dioxide.

Belova V, Borodina T, Möhwald H, Shchukin DG.

Ultrason Sonochem. 2011 Jan;18(1):310-7. doi: 10.1016/j.ultsonch.2010.06.012. Epub 2010 Jul 1.

PMID:
20638889
13.

Dielectrophoresis of functionalized lipid unilamellar vesicles (liposomes) with contrasting surface constructs.

Froude VE, Zhu Y.

J Phys Chem B. 2009 Feb 12;113(6):1552-8. doi: 10.1021/jp808454w.

PMID:
19193162
14.

Slow insertion kinetics during interaction of a model antimicrobial peptide with unilamellar phospholipid vesicles.

Ningsih Z, Hossain MA, Wade JD, Clayton AH, Gee ML.

Langmuir. 2012 Jan 31;28(4):2217-24. doi: 10.1021/la203770j. Epub 2011 Dec 22.

PMID:
22148887
15.

Functionalized nanoparticle interactions with polymeric membranes.

Ladner DA, Steele M, Weir A, Hristovski K, Westerhoff P.

J Hazard Mater. 2012 Apr 15;211-212:288-95. doi: 10.1016/j.jhazmat.2011.11.051. Epub 2011 Nov 23.

16.

How type II diabetes-related islet amyloid polypeptide damages lipid bilayers.

Lee CC, Sun Y, Huang HW.

Biophys J. 2012 Mar 7;102(5):1059-68. doi: 10.1016/j.bpj.2012.01.039. Epub 2012 Mar 6.

18.

Effect of antimicrobial peptide on the dynamics of phosphocholine membrane: role of cholesterol and physical state of bilayer.

Sharma VK, Mamontov E, Anunciado DB, O'Neill H, Urban VS.

Soft Matter. 2015 Sep 14;11(34):6755-67. doi: 10.1039/c5sm01562f. Epub 2015 Jul 27.

PMID:
26212615
19.

Influence of the bilayer composition on the binding and membrane disrupting effect of Polybia-MP1, an antimicrobial mastoparan peptide with leukemic T-lymphocyte cell selectivity.

dos Santos Cabrera MP, Arcisio-Miranda M, Gorjão R, Leite NB, de Souza BM, Curi R, Procopio J, Ruggiero Neto J, Palma MS.

Biochemistry. 2012 Jun 19;51(24):4898-908. doi: 10.1021/bi201608d. Epub 2012 Jun 6.

PMID:
22630563
20.

Vesicle budding induced by a pore-forming peptide.

Yu Y, Vroman JA, Bae SC, Granick S.

J Am Chem Soc. 2010 Jan 13;132(1):195-201. doi: 10.1021/ja9059014.

PMID:
20000420

Supplemental Content

Support Center