Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

An emerging new paradigm in opioid withdrawal: a critical role for glia-neuron signaling in the periaqueductal gray.

Ouyang H, Liu S, Zeng W, Levitt RC, Candiotti KA, Hao S.

ScientificWorldJournal. 2012;2012:940613. doi: 10.1100/2012/940613. Epub 2012 Aug 2. Review.

2.

GABA transporter currents activated by protein kinase A excite midbrain neurons during opioid withdrawal.

Bagley EE, Gerke MB, Vaughan CW, Hack SP, Christie MJ.

Neuron. 2005 Feb 3;45(3):433-45.

3.

Efferent projections of ProTRH neurons in the ventrolateral periaqueductal gray.

Mihaly E, Legradi G, Fekete C, Lechan RM.

Brain Res. 2001 Nov 23;919(2):185-97.

PMID:
11701131
4.

Enhanced opioid efficacy in opioid dependence is caused by an altered signal transduction pathway.

Ingram SL, Vaughan CW, Bagley EE, Connor M, Christie MJ.

J Neurosci. 1998 Dec 15;18(24):10269-76.

5.

The role of TNFα in the periaqueductal gray during naloxone-precipitated morphine withdrawal in rats.

Hao S, Liu S, Zheng X, Zheng W, Ouyang H, Mata M, Fink DJ.

Neuropsychopharmacology. 2011 Feb;36(3):664-76. doi: 10.1038/npp.2010.197. Epub 2010 Nov 10.

7.

Opiate withdrawal increases ProTRH gene expression in the ventrolateral column of the midbrain periaqueductal gray.

Légrádi G, Rand WM, Hitz S, Nillni EA, Jackson IM, Lechan RM.

Brain Res. 1996 Aug 5;729(1):10-19.

PMID:
8874872
8.

Enkephalinergic neurons in the periaqueductal gray and morphine withdrawal.

Fukunaga Y, Kishioka S.

Jpn J Pharmacol. 2000 Mar;82(3):175-80. Review.

10.

IL-4 mediated by HSV vector suppresses morphine withdrawal response and decreases TNFα, NR2B, and pC/EBPβ in the periaqueductal gray in rats.

Yi H, Iida T, Liu S, Ikegami D, Liu Q, Iida A, Lubarsky DA, Hao S.

Gene Ther. 2017 Apr;24(4):224-233. doi: 10.1038/gt.2017.11. Epub 2017 Mar 16.

PMID:
28206989
12.

Enhanced c-Fos in periaqueductal grey GABAergic neurons during opioid withdrawal.

Chieng BC, Hallberg C, Nyberg FJ, Christie MJ.

Neuroreport. 2005 Aug 22;16(12):1279-83.

PMID:
16056125
13.

Enhanced Fos expression in glutamic acid decarboxylase immunoreactive neurons of the mouse periaqueductal grey during opioid withdrawal.

Hacker J, Pedersen NP, Chieng BC, Keay KA, Christie MJ.

Neuroscience. 2006;137(4):1389-96. Epub 2005 Dec 15.

PMID:
16359817
14.

Opioid-induced release of neurotensin in the periaqueductal gray matter of freely moving rats.

Stiller CO, Gustafsson H, Fried K, Brodin E.

Brain Res. 1997 Nov 7;774(1-2):149-58.

PMID:
9452203
16.

Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction.

Christie MJ.

Br J Pharmacol. 2008 May;154(2):384-96. doi: 10.1038/bjp.2008.100. Epub 2008 Apr 14. Review.

17.

Opiate drug use and the pathophysiology of neuroAIDS.

Hauser KF, Fitting S, Dever SM, Podhaizer EM, Knapp PE.

Curr HIV Res. 2012 Jul;10(5):435-52. Review.

18.

Local opioid withdrawal in rat single periaqueductal gray neurons in vitro.

Chieng B, Christie MD.

J Neurosci. 1996 Nov 15;16(22):7128-36.

19.

Increase of preproenkephalin mRNA in the caudal part of periaqueductal gray by morphine withdrawal in rats: a quantitative in situ hybridization study.

Fukunaga Y, Nishida S, Inoue N, Kishioka S, Yamamoto H.

Brain Res Mol Brain Res. 1996 Nov;42(1):128-30.

PMID:
8915589
20.

Changes in the brain kappa-opioid receptor levels of rats in withdrawal from physical dependence upon butorphanol.

Fan LW, Tien LT, Tanaka S, Ma T, Chudapongse N, Sinchaisuk S, Rockhold RW, Ho IK.

Neuroscience. 2003;121(4):1063-74.

PMID:
14580956

Supplemental Content

Support Center