Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 503

1.

Comparison of human amniotic fluid-derived and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells: Characterization and myocardial differentiation capacity.

Bai J, Hu Y, Wang YR, Liu LF, Chen J, Su SP, Wang Y.

J Geriatr Cardiol. 2012 Jun;9(2):166-71. doi: 10.3724/SP.J.1263.2011.12091.

2.

Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells differentiation into nerve-like cells.

Ma L, Feng XY, Cui BL, Law F, Jiang XW, Yang LY, Xie QD, Huang TH.

Chin Med J (Engl). 2005 Dec 5;118(23):1987-93.

PMID:
16336835
3.

Pluripotent gene expression in mesenchymal stem cells from human umbilical cord Wharton's jelly and their differentiation potential to neural-like cells.

Tantrawatpan C, Manochantr S, Kheolamai P, U-Pratya Y, Supokawej A, Issaragrisil S.

J Med Assoc Thai. 2013 Sep;96(9):1208-17.

PMID:
24163998
4.

Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton's jelly in the horse.

Iacono E, Brunori L, Pirrone A, Pagliaro PP, Ricci F, Tazzari PL, Merlo B.

Reproduction. 2012 Apr;143(4):455-68. doi: 10.1530/REP-10-0408. Epub 2012 Jan 24.

PMID:
22274885
5.

Human chorionic-plate-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells.

Kim MJ, Shin KS, Jeon JH, Lee DR, Shim SH, Kim JK, Cha DH, Yoon TK, Kim GJ.

Cell Tissue Res. 2011 Oct;346(1):53-64. doi: 10.1007/s00441-011-1249-8. Epub 2011 Oct 11.

PMID:
21987220
6.

The effect of fibroblast growth factor on distinct differentiation potential of cord blood-derived unrestricted somatic stem cells and Wharton's jelly-derived mesenchymal stem/stromal cells.

Lee S, Park BJ, Kim JY, Jekarl D, Choi HY, Lee SY, Kim M, Kim Y, Park MS.

Cytotherapy. 2015 Dec;17(12):1723-31. doi: 10.1016/j.jcyt.2015.09.007.

PMID:
26589753
7.

Promising new potential for mesenchymal stem cells derived from human umbilical cord Wharton's jelly: sweat gland cell-like differentiative capacity.

Xu Y, Huang S, Ma K, Fu X, Han W, Sheng Z.

J Tissue Eng Regen Med. 2012 Aug;6(8):645-54. doi: 10.1002/term.468. Epub 2011 Sep 13.

PMID:
21916019
8.

Positive selection of Wharton's jelly-derived CD105(+) cells by MACS technique and their subsequent cultivation under suspension culture condition: A simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells.

Amiri F, Halabian R, Dehgan Harati M, Bahadori M, Mehdipour A, Mohammadi Roushandeh A, Habibi Roudkenar M.

Hematology. 2015 May;20(4):208-16. doi: 10.1179/1607845414Y.0000000185. Epub 2014 Aug 12.

PMID:
25116042
9.

Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Wharton's jelly-derived mesenchymal stem cells.

Corotchi MC, Popa MA, Remes A, Sima LE, Gussi I, Lupu Plesu M.

Stem Cell Res Ther. 2013 Jul 11;4(4):81. doi: 10.1186/scrt232.

10.

Isolation and characterization of Wharton's jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system.

Cardoso TC, Ferrari HF, Garcia AF, Novais JB, Silva-Frade C, Ferrarezi MC, Andrade AL, Gameiro R.

BMC Biotechnol. 2012 May 4;12:18. doi: 10.1186/1472-6750-12-18.

11.

Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.

Batsali AK, Pontikoglou C, Koutroulakis D, Pavlaki KI, Damianaki A, Mavroudi I, Alpantaki K, Kouvidi E, Kontakis G, Papadaki HA.

Stem Cell Res Ther. 2017 Apr 26;8(1):102. doi: 10.1186/s13287-017-0555-9.

12.

Differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells into endometrial cells.

Shi Q, Gao J, Jiang Y, Sun B, Lu W, Su M, Xu Y, Yang X, Zhang Y.

Stem Cell Res Ther. 2017 Nov 2;8(1):246. doi: 10.1186/s13287-017-0700-5.

13.

Mesenchymal Stem Cells from Wharton's Jelly and Amniotic Fluid.

Joerger-Messerli MS, Marx C, Oppliger B, Mueller M, Surbek DV, Schoeberlein A.

Best Pract Res Clin Obstet Gynaecol. 2016 Feb;31:30-44. doi: 10.1016/j.bpobgyn.2015.07.006. Epub 2015 Sep 10. Review.

PMID:
26482184
14.

Wharton's Jelly Derived-Mesenchymal Stem Cells: Isolation and Characterization.

Ranjbaran H, Abediankenari S, Mohammadi M, Jafari N, Khalilian A, Rahmani Z, Momeninezhad Amiri M, Ebrahimi P.

Acta Med Iran. 2018 Jan;56(1):28-33.

15.

Hydrogen peroxide preconditioning enhances the therapeutic efficacy of Wharton's Jelly mesenchymal stem cells after myocardial infarction.

Zhang J, Chen GH, Wang YW, Zhao J, Duan HF, Liao LM, Zhang XZ, Chen YD, Chen H.

Chin Med J (Engl). 2012 Oct;125(19):3472-8.

PMID:
23044308
16.

Altered expression of microRNAs in the neuronal differentiation of human Wharton's Jelly mesenchymal stem cells.

Zhuang H, Zhang R, Zhang S, Shu Q, Zhang D, Xu G.

Neurosci Lett. 2015 Jul 23;600:69-74. doi: 10.1016/j.neulet.2015.05.061. Epub 2015 Jun 3.

PMID:
26049006
17.

Human umbilical cord mesenchymal stem cells derived from Wharton's jelly differentiate into cholinergic-like neurons in vitro.

Liang J, Wu S, Zhao H, Li SL, Liu ZX, Wu J, Zhou L.

Neurosci Lett. 2013 Jan 4;532:59-63. doi: 10.1016/j.neulet.2012.11.014. Epub 2012 Nov 21.

PMID:
23178189
18.

Inhibition of non-muscle myosin II leads to G0/G1 arrest of Wharton's jelly-derived mesenchymal stromal cells.

Sharma T, Kumari P, Pincha N, Mutukula N, Saha S, Jana SS, Ta M.

Cytotherapy. 2014 May;16(5):640-52. doi: 10.1016/j.jcyt.2013.09.003. Epub 2013 Nov 7.

PMID:
24210786
19.

Stage-specific embryonic antigen 4 in Wharton's jelly-derived mesenchymal stem cells is not a marker for proliferation and multipotency.

He H, Nagamura-Inoue T, Tsunoda H, Yuzawa M, Yamamoto Y, Yorozu P, Agata H, Tojo A.

Tissue Eng Part A. 2014 Apr;20(7-8):1314-24. doi: 10.1089/ten.TEA.2013.0333. Epub 2014 Mar 14.

PMID:
24279891
20.

Compared to the amniotic membrane, Wharton's jelly may be a more suitable source of mesenchymal stem cells for cardiovascular tissue engineering and clinical regeneration.

Pu L, Meng M, Wu J, Zhang J, Hou Z, Gao H, Xu H, Liu B, Tang W, Jiang L, Li Y.

Stem Cell Res Ther. 2017 Mar 21;8(1):72. doi: 10.1186/s13287-017-0501-x.

Supplemental Content

Support Center