Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 125

1.

Intrinsic firing properties in the avian auditory brain stem allow both integration and encoding of temporally modulated noisy inputs in vitro.

Kreeger LJ, Arshed A, MacLeod KM.

J Neurophysiol. 2012 Nov;108(10):2794-809. doi: 10.1152/jn.00092.2012. Epub 2012 Aug 22.

2.

Heterogeneity of intrinsic biophysical properties among cochlear nucleus neurons improves the population coding of temporal information.

Ahn J, Kreeger LJ, Lubejko ST, Butts DA, MacLeod KM.

J Neurophysiol. 2014 Jun 1;111(11):2320-31. doi: 10.1152/jn.00836.2013. Epub 2014 Mar 12.

3.

Adaptation of firing rate and spike-timing precision in the avian cochlear nucleus.

Kuznetsova MS, Higgs MH, Spain WJ.

J Neurosci. 2008 Nov 12;28(46):11906-15. doi: 10.1523/JNEUROSCI.3827-08.2008.

4.

Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.

Gao H, Lu Y.

Neuroscience. 2008 Apr 22;153(1):131-43. doi: 10.1016/j.neuroscience.2008.01.059. Epub 2008 Feb 13.

PMID:
18355968
5.

Intrinsic neuronal properties of the chick nucleus angularis.

Soares D, Chitwood RA, Hyson RL, Carr CE.

J Neurophysiol. 2002 Jul;88(1):152-62.

7.
8.
9.

Dynamic spike thresholds during synaptic integration preserve and enhance temporal response properties in the avian cochlear nucleus.

Howard MA, Rubel EW.

J Neurosci. 2010 Sep 8;30(36):12063-74. doi: 10.1523/JNEUROSCI.1840-10.2010.

10.

GABAergic inhibition sharpens the frequency tuning and enhances phase locking in chicken nucleus magnocellularis neurons.

Fukui I, Burger RM, Ohmori H, Rubel EW.

J Neurosci. 2010 Sep 8;30(36):12075-83. doi: 10.1523/JNEUROSCI.1484-10.2010.

11.

Encoding timing and intensity in the ventral cochlear nucleus of the cat.

Rhode WS, Smith PH.

J Neurophysiol. 1986 Aug;56(2):261-86.

PMID:
3760921
12.

Roles of axonal sodium channels in precise auditory time coding at nucleus magnocellularis of the chick.

Kuba H, Ohmori H.

J Physiol. 2009 Jan 15;587(1):87-100. doi: 10.1113/jphysiol.2008.162651. Epub 2008 Nov 10.

13.

Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus.

Brenowitz S, Trussell LO.

J Neurosci. 2001 Dec 1;21(23):9487-98.

14.
15.

Potassium currents and excitability in second-order auditory and vestibular neurons.

Peusner KD, Gamkrelidze G, Giaume C.

J Neurosci Res. 1998 Sep 1;53(5):511-20. Review.

PMID:
9726422
16.

Temporal properties of responses to sound in the ventral nucleus of the lateral lemniscus.

Recio-Spinoso A, Joris PX.

J Neurophysiol. 2014 Feb;111(4):817-35. doi: 10.1152/jn.00971.2011. Epub 2013 Nov 27.

17.
18.

Factors controlling the input-output relationship of spherical bushy cells in the gerbil cochlear nucleus.

Kuenzel T, Borst JG, van der Heijden M.

J Neurosci. 2011 Mar 16;31(11):4260-73. doi: 10.1523/JNEUROSCI.5433-10.2011.

19.

Target-specific regulation of presynaptic release properties at auditory nerve terminals in the avian cochlear nucleus.

Ahn J, MacLeod KM.

J Neurophysiol. 2016 Mar;115(3):1679-90. doi: 10.1152/jn.00752.2015. Epub 2015 Dec 30.

20.

Mechanisms for signal transformation in lemniscal auditory thalamus.

Tennigkeit F, Schwarz DW, Puil E.

J Neurophysiol. 1996 Dec;76(6):3597-608.

PMID:
8985860

Supplemental Content

Support Center