Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 127

1.

Cardiorespiratory and metabolic responses associated with children's physical activity during self-paced games.

Belcastro AN, Morrison KS, Hicks E, Matta H.

Can J Physiol Pharmacol. 2012 Sep;90(9):1269-76. doi: 10.1139/y2012-106. Epub 2012 Aug 22.

PMID:
22913550
2.

Energy expenditure, heart rate response, and metabolic equivalents (METs) of adults taking part in children's games.

Fischer SL, Watts PB, Jensen RL, Nelson J.

J Sports Med Phys Fitness. 2004 Dec;44(4):398-403.

PMID:
15758852
3.

Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children's activities.

Eston RG, Rowlands AV, Ingledew DK.

J Appl Physiol (1985). 1998 Jan;84(1):362-71.

4.

Energy expended playing video console games: an opportunity to increase children's physical activity?

Maddison R, Mhurchu CN, Jull A, Jiang Y, Prapavessis H, Rodgers A.

Pediatr Exerc Sci. 2007 Aug;19(3):334-43.

PMID:
18019591
5.

Predictive validity of three ActiGraph energy expenditure equations for children.

Trost SG, Way R, Okely AD.

Med Sci Sports Exerc. 2006 Feb;38(2):380-7.

PMID:
16531910
6.

Use of heart rate to predict energy expenditure from low to high activity levels.

Hiilloskorpi HK, Pasanen ME, Fogelholm MG, Laukkanen RM, Mänttäri AT.

Int J Sports Med. 2003 Jul;24(5):332-6.

PMID:
12868043
7.

Playing active video games increases energy expenditure in children.

Graf DL, Pratt LV, Hester CN, Short KR.

Pediatrics. 2009 Aug;124(2):534-40. doi: 10.1542/peds.2008-2851. Epub 2009 Jul 13.

PMID:
19596737
8.

Validity of accelerometry in ambulatory children and adolescents with cerebral palsy.

Clanchy KM, Tweedy SM, Boyd RN, Trost SG.

Eur J Appl Physiol. 2011 Dec;111(12):2951-9. doi: 10.1007/s00421-011-1915-2. Epub 2011 Mar 26.

PMID:
21442163
9.

Metabolic responses of upper-body accelerometer-controlled video games in adults.

Stroud LC, Amonette WE, Dupler TL.

Appl Physiol Nutr Metab. 2010 Oct;35(5):643-9. doi: 10.1139/H10-058.

PMID:
20962920
10.
11.

Estimating energy expenditure using accelerometers.

Crouter SE, Churilla JR, Bassett DR Jr.

Eur J Appl Physiol. 2006 Dec;98(6):601-12. Epub 2006 Oct 21.

PMID:
17058102
12.

Neural network versus activity-specific prediction equations for energy expenditure estimation in children.

Ruch N, Joss F, Jimmy G, Melzer K, Hänggi J, Mäder U.

J Appl Physiol (1985). 2013 Nov 1;115(9):1229-36. doi: 10.1152/japplphysiol.01443.2012. Epub 2013 Aug 29.

13.

Evaluation of low-intensity physical activity by triaxial accelerometry.

Midorikawa T, Tanaka S, Kaneko K, Koizumi K, Ishikawa-Takata K, Futami J, Tabata I.

Obesity (Silver Spring). 2007 Dec;15(12):3031-8. doi: 10.1038/oby.2007.361.

14.
15.

Measurement and prediction of energy expenditure in males during household and garden tasks.

Gunn SM, van der Ploeg GE, Withers RT, Gore CJ, Owen N, Bauman AE, Cormack J.

Eur J Appl Physiol. 2004 Jan;91(1):61-70. Epub 2003 Sep 4. Erratum in: Eur J Appl Physiol. 2004 Jun;92(1-2):231.

PMID:
12955520
16.

Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry.

Beghin L, Budniok T, Vaksman G, Boussard-Delbecque L, Michaud L, Turck D, Gottrand F.

Clin Nutr. 2000 Dec;19(6):425-35.

PMID:
11104594
17.

Energy costs of physical activities in children and adolescents.

Harrell JS, McMurray RG, Baggett CD, Pennell ML, Pearce PF, Bangdiwala SI.

Med Sci Sports Exerc. 2005 Feb;37(2):329-36.

PMID:
15692331
18.
19.

Measuring energy expenditure in habitually active and sedentary pregnant women.

Stein AD, Rivera JM, Pivarnik JM.

Med Sci Sports Exerc. 2003 Aug;35(8):1441-6.

PMID:
12900702
20.

Prediction of energy expenditure from wrist accelerometry in people with and without Down syndrome.

Agiovlasitis S, Motl RW, Foley JT, Fernhall B.

Adapt Phys Activ Q. 2012 Apr;29(2):179-90.

PMID:
22467836

Supplemental Content

Support Center