Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 151

1.

Mio/dChREBP coordinately increases fat mass by regulating lipid synthesis and feeding behavior in Drosophila.

Sassu ED, McDermott JE, Keys BJ, Esmaeili M, Keene AC, Birnbaum MJ, DiAngelo JR.

Biochem Biophys Res Commun. 2012 Sep 14;426(1):43-8. doi: 10.1016/j.bbrc.2012.08.028. Epub 2012 Aug 12.

2.

Mio acts in the Drosophila brain to control nutrient storage and feeding.

Docherty JE, Manno JE, McDermott JE, DiAngelo JR.

Gene. 2015 Sep 1;568(2):190-5. doi: 10.1016/j.gene.2015.05.055. Epub 2015 May 27.

3.

The Regulation of Muscle Structure and Metabolism by Mio/dChREBP in Drosophila.

Polak GL, Pasqualino A, Docherty JE, Beck SJ, DiAngelo JR.

PLoS One. 2015 Aug 25;10(8):e0136504. doi: 10.1371/journal.pone.0136504. eCollection 2015.

4.

Role of fat body lipogenesis in protection against the effects of caloric overload in Drosophila.

Musselman LP, Fink JL, Ramachandran PV, Patterson BW, Okunade AL, Maier E, Brent MR, Turk J, Baranski TJ.

J Biol Chem. 2013 Mar 22;288(12):8028-42. doi: 10.1074/jbc.M112.371047. Epub 2013 Jan 25.

5.

Mondo/ChREBP-Mlx-regulated transcriptional network is essential for dietary sugar tolerance in Drosophila.

Havula E, Teesalu M, Hyötyläinen T, Seppälä H, Hasygar K, Auvinen P, Orešič M, Sandmann T, Hietakangas V.

PLoS Genet. 2013 Apr;9(4):e1003438. doi: 10.1371/journal.pgen.1003438. Epub 2013 Apr 4.

6.
7.

Molecular cloning and expression of chicken carbohydrate response element binding protein and Max-like protein X gene homologues.

Proszkowiec-Weglarz M, Humphrey BD, Richards MP.

Mol Cell Biochem. 2008 May;312(1-2):167-84. doi: 10.1007/s11010-008-9732-6. Epub 2008 Mar 29.

PMID:
18373069
8.

Mondo-Mlx Mediates Organismal Sugar Sensing through the Gli-Similar Transcription Factor Sugarbabe.

Mattila J, Havula E, Suominen E, Teesalu M, Surakka I, Hynynen R, Kilpinen H, Väänänen J, Hovatta I, Käkelä R, Ripatti S, Sandmann T, Hietakangas V.

Cell Rep. 2015 Oct 13;13(2):350-64. doi: 10.1016/j.celrep.2015.08.081. Epub 2015 Oct 1.

9.

ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome.

Iizuka K, Horikawa Y.

Endocr J. 2008 Aug;55(4):617-24. Epub 2008 May 19. Review.

10.

The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans.

Benhamed F, Denechaud PD, Lemoine M, Robichon C, Moldes M, Bertrand-Michel J, Ratziu V, Serfaty L, Housset C, Capeau J, Girard J, Guillou H, Postic C.

J Clin Invest. 2012 Jun;122(6):2176-94. doi: 10.1172/JCI41636. Epub 2012 May 1.

11.

Direct role of ChREBP.Mlx in regulating hepatic glucose-responsive genes.

Ma L, Tsatsos NG, Towle HC.

J Biol Chem. 2005 Mar 25;280(12):12019-27. Epub 2005 Jan 20.

12.

Regulation of energy stores and feeding by neuronal and peripheral CREB activity in Drosophila.

Iijima K, Zhao L, Shenton C, Iijima-Ando K.

PLoS One. 2009 Dec 30;4(12):e8498. doi: 10.1371/journal.pone.0008498.

13.

Fructose containing sugars modulate mRNA of lipogenic genes ACC and FAS and protein levels of transcription factors ChREBP and SREBP1c with no effect on body weight or liver fat.

Janevski M, Ratnayake S, Siljanovski S, McGlynn MA, Cameron-Smith D, Lewandowski P.

Food Funct. 2012 Feb;3(2):141-9. doi: 10.1039/c1fo10111k. Epub 2011 Dec 9.

PMID:
22159273
14.

Flightless I homolog negatively regulates ChREBP activity in cancer cells.

Wu L, Chen H, Zhu Y, Meng J, Li Y, Li M, Yang D, Zhang P, Feng M, Tong X.

Int J Biochem Cell Biol. 2013 Nov;45(11):2688-97. doi: 10.1016/j.biocel.2013.09.004. Epub 2013 Sep 17.

PMID:
24055811
15.

A buoyancy-based screen of Drosophila larvae for fat-storage mutants reveals a role for Sir2 in coupling fat storage to nutrient availability.

Reis T, Van Gilst MR, Hariharan IK.

PLoS Genet. 2010 Nov 11;6(11):e1001206. doi: 10.1371/journal.pgen.1001206.

16.

ChREBP*Mlx is the principal mediator of glucose-induced gene expression in the liver.

Ma L, Robinson LN, Towle HC.

J Biol Chem. 2006 Sep 29;281(39):28721-30. Epub 2006 Aug 2.

17.

Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation.

Dentin R, Benhamed F, Pégorier JP, Foufelle F, Viollet B, Vaulont S, Girard J, Postic C.

J Clin Invest. 2005 Oct;115(10):2843-54. Epub 2005 Sep 22.

18.

High glucose-induced O-GlcNAcylated carbohydrate response element-binding protein (ChREBP) mediates mesangial cell lipogenesis and fibrosis: the possible role in the development of diabetic nephropathy.

Park MJ, Kim DI, Lim SK, Choi JH, Han HJ, Yoon KC, Park SH.

J Biol Chem. 2014 May 9;289(19):13519-30. doi: 10.1074/jbc.M113.530139. Epub 2014 Mar 10.

19.

The role of the carbohydrate response element-binding protein in male fructose-fed rats.

Erion DM, Popov V, Hsiao JJ, Vatner D, Mitchell K, Yonemitsu S, Nagai Y, Kahn M, Gillum MP, Dong J, Murray SF, Manchem VP, Bhanot S, Cline GW, Shulman GI, Samuel VT.

Endocrinology. 2013 Jan;154(1):36-44. doi: 10.1210/en.2012-1725. Epub 2012 Nov 16.

20.

Carbohydrate responsive element-binding protein (ChREBP): a key regulator of glucose metabolism and fat storage.

Uyeda K, Yamashita H, Kawaguchi T.

Biochem Pharmacol. 2002 Jun 15;63(12):2075-80. Review.

PMID:
12110366

Supplemental Content

Support Center