Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 201

1.

Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs.

Zhu H, Xia R, Zhao B, An YQ, Dardick CD, Callahan AM, Liu Z.

BMC Plant Biol. 2012 Aug 21;12:149. doi: 10.1186/1471-2229-12-149.

2.

Identification of miRNAs and their target genes in peach (Prunus persica L.) using high-throughput sequencing and degradome analysis.

Luo X, Gao Z, Shi T, Cheng Z, Zhang Z, Ni Z.

PLoS One. 2013 Nov 13;8(11):e79090. doi: 10.1371/journal.pone.0079090. eCollection 2013.

3.

Identification and validation of potential conserved microRNAs and their targets in peach (Prunus persica).

Gao Z, Luo X, Shi T, Cai B, Zhang Z, Cheng Z, Zhuang W.

Mol Cells. 2012 Sep;34(3):239-49. Epub 2012 Aug 8.

4.

Genome wide identification of chilling responsive microRNAs in Prunus persica.

Barakat A, Sriram A, Park J, Zhebentyayeva T, Main D, Abbott A.

BMC Genomics. 2012 Sep 15;13:481. doi: 10.1186/1471-2164-13-481.

5.

Identification of Known and Novel microRNAs and Their Targets in Peach (Prunus persica) Fruit by High-Throughput Sequencing.

Zhang C, Zhang B, Ma R, Yu M, Guo S, Guo L, Korir NK.

PLoS One. 2016 Jul 28;11(7):e0159253. doi: 10.1371/journal.pone.0159253. eCollection 2016.

6.

Apple miRNAs and tasiRNAs with novel regulatory networks.

Xia R, Zhu H, An YQ, Beers EP, Liu Z.

Genome Biol. 2012 Jun 15;13(6):R47. doi: 10.1186/gb-2012-13-6-r47.

7.

The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.

Hu H, Rashotte AM, Singh NK, Weaver DB, Goertzen LR, Singh SR, Locy RD.

PLoS One. 2015 Jun 12;10(6):e0127468. doi: 10.1371/journal.pone.0127468. eCollection 2015.

8.

Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing.

Eldem V, Çelikkol Akçay U, Ozhuner E, Bakır Y, Uranbey S, Unver T.

PLoS One. 2012;7(12):e50298. doi: 10.1371/journal.pone.0050298. Epub 2012 Dec 5.

9.

Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage.

Lombardo VA, Osorio S, Borsani J, Lauxmann MA, Bustamante CA, Budde CO, Andreo CS, Lara MV, Fernie AR, Drincovich MF.

Plant Physiol. 2011 Dec;157(4):1696-710. doi: 10.1104/pp.111.186064. Epub 2011 Oct 20.

10.

The peach (Prunus persica L. Batsch) genome harbours 10 KNOX genes, which are differentially expressed in stem development, and the class 1 KNOPE1 regulates elongation and lignification during primary growth.

Testone G, Condello E, Verde I, Nicolodi C, Caboni E, Dettori MT, Vendramin E, Bruno L, Bitonti MB, Mele G, Giannino D.

J Exp Bot. 2012 Sep;63(15):5417-35. doi: 10.1093/jxb/ers194. Epub 2012 Aug 9.

11.

Bioinformatics prediction of miRNAs in the Prunus persica genome with validation of their precise sequences by miR-RACE.

Zhang Y, Bai Y, Han J, Chen M, Kayesh E, Jiang W, Fang J.

J Plant Physiol. 2013 Jan 1;170(1):80-92. doi: 10.1016/j.jplph.2012.08.021. Epub 2012 Oct 27.

PMID:
23107282
12.

Characterization of the small RNA component of leaves and fruits from four different cucurbit species.

Jagadeeswaran G, Nimmakayala P, Zheng Y, Gowdu K, Reddy UK, Sunkar R.

BMC Genomics. 2012 Jul 23;13:329. doi: 10.1186/1471-2164-13-329.

13.

The study of a SPATULA-like bHLH transcription factor expressed during peach (Prunus persica) fruit development.

Tani E, Tsaballa A, Stedel C, Kalloniati C, Papaefthimiou D, Polidoros A, Darzentas N, Ganopoulos I, Flemetakis E, Katinakis P, Tsaftaris A.

Plant Physiol Biochem. 2011 Jun;49(6):654-63. doi: 10.1016/j.plaphy.2011.01.020. Epub 2011 Jan 27.

PMID:
21324706
14.

Genome-wide identification and in silico characterisation of microRNAs, their targets and processing pathway genes in Phaseolus vulgaris L.

de Sousa Cardoso TC, Portilho LG, de Oliveira CL, McKeown PC, Maluf WR, Gomes LA, Teixeira TA, do Amaral LR, Spillane C, de Souza Gomes M.

Plant Biol (Stuttg). 2016 Mar;18(2):206-19. doi: 10.1111/plb.12377. Epub 2015 Aug 25.

PMID:
26250338
15.

Identification and differential expression dynamics of peach small GTPases encoding genes during fruit development and ripening.

Falchi R, Cipriani G, Marrazzo T, Nonis A, Vizzotto G, Ruperti B.

J Exp Bot. 2010 Jun;61(10):2829-42. doi: 10.1093/jxb/erq116. Epub 2010 May 25.

16.

Novel and Recently Evolved MicroRNA Clusters Regulate Expansive F-BOX Gene Networks through Phased Small Interfering RNAs in Wild Diploid Strawberry.

Xia R, Ye S, Liu Z, Meyers BC, Liu Z.

Plant Physiol. 2015 Sep;169(1):594-610. doi: 10.1104/pp.15.00253. Epub 2015 Jul 4.

17.

Differential Expression of Hyperhydricity Responsive Peach miRNAs.

Diler E, Unver T, Karakülah G.

J Integr Bioinform. 2016 Dec 31;13(5):308. doi: 10.2390/biecoll-jib-2016-308.

PMID:
28187422
18.

Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing.

Song QX, Liu YF, Hu XY, Zhang WK, Ma B, Chen SY, Zhang JS.

BMC Plant Biol. 2011 Jan 10;11:5. doi: 10.1186/1471-2229-11-5.

19.

Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence.

Dardick CD, Callahan AM, Chiozzotto R, Schaffer RJ, Piagnani MC, Scorza R.

BMC Biol. 2010 Feb 9;8:13. doi: 10.1186/1741-7007-8-13.

20.

Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors.

Ravaglia D, Espley RV, Henry-Kirk RA, Andreotti C, Ziosi V, Hellens RP, Costa G, Allan AC.

BMC Plant Biol. 2013 Apr 25;13:68. doi: 10.1186/1471-2229-13-68.

Supplemental Content

Support Center