Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 139

1.

Arsenic in the rhizosphere soil solution of ferns.

Wei C, Zheng H, Yu J.

Int J Phytoremediation. 2012 Dec;14(10):950-65.

PMID:
22908657
2.

Rhizosphere characteristics of two arsenic hyperaccumulating Pteris ferns.

Gonzaga MI, Ma LQ, Santos JA, Matias MI.

Sci Total Environ. 2009 Aug 1;407(16):4711-6. doi: 10.1016/j.scitotenv.2009.04.037. Epub 2009 May 24.

PMID:
19476972
3.

Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency.

Fitz WJ, Wenzel WW, Zhang H, Nurmi J, Stipek K, Fischerova Z, Schweiger P, Köllensperger G, Ma LQ, Stingeder G.

Environ Sci Technol. 2003 Nov 1;37(21):5008-14.

PMID:
14620831
4.

Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L.

Silva Gonzaga MI, Santos JA, Ma LQ.

Environ Pollut. 2006 Sep;143(2):254-60. Epub 2006 Jan 25.

PMID:
16442683
5.
6.

Phytoextraction and phytofiltration of arsenic.

Rozas MA, Alkorta I, Garbisu C.

Rev Environ Health. 2006 Jan-Mar;21(1):43-56. Review.

PMID:
16700429
7.
8.
9.

Effect of soil pH on as hyperaccumulation capacity in fern species, Pityrogramma calomelanos.

Anh BT, Kim DD, Kuschk P, Tua TV, Hue NT, Minh NN.

J Environ Biol. 2013 Mar;34(2):237-42.

PMID:
24620585
10.

Enhanced phytoremediation of arsenic contaminated land.

Jankong P, Visoottiviseth P, Khokiattiwong S.

Chemosphere. 2007 Aug;68(10):1906-12. Epub 2007 Apr 9.

PMID:
17416405
11.

Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata.

Xu JY, Li HB, Liang S, Luo J, Ma LQ.

Environ Pollut. 2014 Nov;194:105-111. doi: 10.1016/j.envpol.2014.07.017. Epub 2014 Aug 5.

PMID:
25103044
12.

Predicting arsenic bioavailability to hyperaccumulator Pteris vittata in arsenic-contaminated soils.

Gonzaga MI, Ma LQ, Pacheco EP, dos Santos WM.

Int J Phytoremediation. 2012 Dec;14(10):939-49.

PMID:
22908656
13.
14.

Arsenic accumulation by ferns: a field survey in southern China.

Wei CY, Wang C, Sun X, Wang WY.

Environ Geochem Health. 2007 Jun;29(3):169-77. Epub 2007 Jan 26.

PMID:
17256100
15.

Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.

Wei CY, Chen TB.

Chemosphere. 2006 May;63(6):1048-53. Epub 2005 Nov 17.

PMID:
16297966
16.

Dynamics of rhizosphere properties and antioxidative responses in wheat (Triticum aestivum L.) under cadmium stress.

Li Y, Wang L, Yang L, Li H.

Ecotoxicol Environ Saf. 2014 Apr;102:55-61. doi: 10.1016/j.ecoenv.2014.01.004. Epub 2014 Feb 1.

PMID:
24580822
17.

Arsenic uptake by common marsh fern Thelypteris palustris and its potential for phytoremediation.

Anderson L, Walsh MM.

Sci Total Environ. 2007 Jul 1;379(2-3):263-5. Epub 2006 Nov 20.

PMID:
17113631
18.

Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: a two-year study.

Kertulis-Tartar GM, Ma LQ, Tu C, Chirenje T.

Int J Phytoremediation. 2006;8(4):311-22.

PMID:
17305305
19.

Dynamic changes of rhizosphere properties and antioxidant enzyme responses of wheat plants (Triticum aestivum L.) grown in mercury-contaminated soils.

Li Y, Sun H, Li H, Yang L, Ye B, Wang W.

Chemosphere. 2013 Oct;93(6):972-7. doi: 10.1016/j.chemosphere.2013.05.063. Epub 2013 Jun 22.

PMID:
23800584
20.

Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns.

Singh N, Ma LQ, Vu JC, Raj A.

Environ Pollut. 2009 Aug-Sep;157(8-9):2300-5. doi: 10.1016/j.envpol.2009.03.036. Epub 2009 Apr 29.

PMID:
19406540

Supplemental Content

Support Center