Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 136

1.

Proteomic profiling of androgen-independent prostate cancer cell lines reveals a role for protein S during the development of high grade and castration-resistant prostate cancer.

Saraon P, Musrap N, Cretu D, Karagiannis GS, Batruch I, Smith C, Drabovich AP, Trudel D, van der Kwast T, Morrissey C, Jarvi KA, Diamandis EP.

J Biol Chem. 2012 Oct 5;287(41):34019-31. doi: 10.1074/jbc.M112.384438. Epub 2012 Aug 20.

2.

Quantitative proteomics reveals that enzymes of the ketogenic pathway are associated with prostate cancer progression.

Saraon P, Cretu D, Musrap N, Karagiannis GS, Batruch I, Drabovich AP, van der Kwast T, Mizokami A, Morrissey C, Jarvi K, Diamandis EP.

Mol Cell Proteomics. 2013 Jun;12(6):1589-601. doi: 10.1074/mcp.M112.023887. Epub 2013 Feb 26.

3.

Crosstalk between epithelial-mesenchymal transition and castration resistance mediated by Twist1/AR signaling in prostate cancer.

Shiota M, Itsumi M, Takeuchi A, Imada K, Yokomizo A, Kuruma H, Inokuchi J, Tatsugami K, Uchiumi T, Oda Y, Naito S.

Endocr Relat Cancer. 2015 Dec;22(6):889-900. doi: 10.1530/ERC-15-0225. Epub 2015 Aug 26.

4.

N-cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer.

Jennbacken K, Tesan T, Wang W, Gustavsson H, Damber JE, Welén K.

Endocr Relat Cancer. 2010 May 18;17(2):469-79. doi: 10.1677/ERC-10-0015. Print 2010 Jun.

5.

Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth.

Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, True LD, Nelson PS.

Cancer Res. 2008 Jun 1;68(11):4447-54. doi: 10.1158/0008-5472.CAN-08-0249.

6.

Genome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in androgen-dependent and androgen-independent prostate cancer cells.

Singh AP, Bafna S, Chaudhary K, Venkatraman G, Smith L, Eudy JD, Johansson SL, Lin MF, Batra SK.

Cancer Lett. 2008 Jan 18;259(1):28-38. Epub 2007 Oct 30.

7.

Androgen suppresses proliferation of castration-resistant LNCaP 104-R2 prostate cancer cells through androgen receptor, Skp2, and c-Myc.

Chuu CP, Kokontis JM, Hiipakka RA, Fukuchi J, Lin HP, Lin CY, Huo C, Su LC, Liao S.

Cancer Sci. 2011 Nov;102(11):2022-8. doi: 10.1111/j.1349-7006.2011.02043.x. Epub 2011 Aug 18. Erratum in: Cancer Sci. 2013 Jan;104(1):142. Huo, Chiech [corrected to Huo, Chieh].

8.

Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence.

Ettinger SL, Sobel R, Whitmore TG, Akbari M, Bradley DR, Gleave ME, Nelson CC.

Cancer Res. 2004 Mar 15;64(6):2212-21.

9.

Targeting IGF-IR with ganitumab inhibits tumorigenesis and increases durability of response to androgen-deprivation therapy in VCaP prostate cancer xenografts.

Fahrenholtz CD, Beltran PJ, Burnstein KL.

Mol Cancer Ther. 2013 Apr;12(4):394-404. doi: 10.1158/1535-7163.MCT-12-0648. Epub 2013 Jan 24.

10.
11.

Proteomic signatures of angiogenesis in androgen-independent prostate cancer.

Karagiannis GS, Saraon P, Jarvi KA, Diamandis EP.

Prostate. 2014 Feb;74(3):260-72. doi: 10.1002/pros.22747. Epub 2013 Oct 26.

PMID:
24166580
12.

Enrichment of putative prostate cancer stem cells after androgen deprivation: upregulation of pluripotency transactivators concurs with resistance to androgen deprivation in LNCaP cell lines.

Seiler D, Zheng J, Liu G, Wang S, Yamashiro J, Reiter RE, Huang J, Zeng G.

Prostate. 2013 Sep;73(13):1378-90. doi: 10.1002/pros.22685. Epub 2013 May 31.

PMID:
23728788
13.

Myb overexpression overrides androgen depletion-induced cell cycle arrest and apoptosis in prostate cancer cells, and confers aggressive malignant traits: potential role in castration resistance.

Srivastava SK, Bhardwaj A, Singh S, Arora S, McClellan S, Grizzle WE, Reed E, Singh AP.

Carcinogenesis. 2012 Jun;33(6):1149-57. doi: 10.1093/carcin/bgs134. Epub 2012 Mar 19.

14.

The TRPS1 transcription factor: androgenic regulation in prostate cancer and high expression in breast cancer.

Chang GT, Jhamai M, van Weerden WM, Jenster G, Brinkmann AO.

Endocr Relat Cancer. 2004 Dec;11(4):815-22.

15.

Patient-derived tissue slice grafts accurately depict response of high-risk primary prostate cancer to androgen deprivation therapy.

Zhao H, Thong A, Nolley R, Reese SW, Santos J, Ingels A, Peehl DM.

J Transl Med. 2013 Aug 28;11:199. doi: 10.1186/1479-5876-11-199.

16.

Identification of mu-crystallin as an androgen-regulated gene in human prostate cancer.

Malinowska K, Cavarretta IT, Susani M, Wrulich OA, Uberall F, Kenner L, Culig Z.

Prostate. 2009 Jul 1;69(10):1109-18. doi: 10.1002/pros.20956.

PMID:
19353593
17.

Proteomic comparison of prostate cancer cell lines LNCaP-FGC and LNCaP-r reveals heatshock protein 60 as a marker for prostate malignancy.

Johansson B, Pourian MR, Chuan YC, Byman I, Bergh A, Pang ST, Norstedt G, Bergman T, Pousette A.

Prostate. 2006 Sep 1;66(12):1235-44.

PMID:
16705742
18.

Expression of arginase II in prostate cancer.

Mumenthaler SM, Yu H, Tze S, Cederbaum SD, Pegg AE, Seligson DB, Grody WW.

Int J Oncol. 2008 Feb;32(2):357-65.

PMID:
18202758
19.

Somatostatin derivative (smsDX) targets cellular metabolism in prostate cancer cells after androgen deprivation therapy.

Yan L, Xing Z, Guo Z, Fang Z, Jiao W, Guo X, Xu Z, Fang Z, Holmberg A, Nilsson S, Liu Z.

PLoS One. 2013;8(2):e55790. doi: 10.1371/journal.pone.0055790. Epub 2013 Feb 7.

20.

Androgen receptor-dependent regulation of Bcl-xL expression: Implication in prostate cancer progression.

Sun A, Tang J, Hong Y, Song J, Terranova PF, Thrasher JB, Svojanovsky S, Wang HG, Li B.

Prostate. 2008 Mar 1;68(4):453-61. doi: 10.1002/pros.20723.

PMID:
18196538

Supplemental Content

Support Center