Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 175


Expression profiling reveals an unexpected growth-stimulating effect of surplus iron on the yeast Saccharomyces cerevisiae.

Du Y, Cheng W, Li WF.

Mol Cells. 2012 Aug;34(2):127-32. doi: 10.1007/s10059-012-2242-0. Epub 2012 Jul 24.


Membrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in saccharomyces cerevisiae.

Schüller C, Mamnun YM, Wolfger H, Rockwell N, Thorner J, Kuchler K.

Mol Biol Cell. 2007 Dec;18(12):4932-44. Epub 2007 Sep 19.


Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study.

Pagani MA, Casamayor A, Serrano R, Atrian S, Ariño J.

Mol Microbiol. 2007 Jul;65(2):521-37.


Genomewide expression profiling of cryptolepine-induced toxicity in Saccharomyces cerevisiae.

Rojas M, Wright CW, Piña B, Portugal J.

Antimicrob Agents Chemother. 2008 Nov;52(11):3844-50. doi: 10.1128/AAC.00532-08. Epub 2008 Aug 18.


Novel insights into iron metabolism by integrating deletome and transcriptome analysis in an iron deficiency model of the yeast Saccharomyces cerevisiae.

Jo WJ, Kim JH, Oh E, Jaramillo D, Holman P, Loguinov AV, Arkin AP, Nislow C, Giaever G, Vulpe CD.

BMC Genomics. 2009 Mar 25;10:130. doi: 10.1186/1471-2164-10-130.


Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron.

Jensen LT, Culotta VC.

J Mol Biol. 2002 Apr 26;318(2):251-60.


Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays.

Gross C, Kelleher M, Iyer VR, Brown PO, Winge DR.

J Biol Chem. 2000 Oct 13;275(41):32310-6.


Time course gene expression profiling of yeast spore germination reveals a network of transcription factors orchestrating the global response.

Geijer C, Pirkov I, Vongsangnak W, Ericsson A, Nielsen J, Krantz M, Hohmann S.

BMC Genomics. 2012 Oct 15;13:554. doi: 10.1186/1471-2164-13-554.


Iron regulation through the back door: iron-dependent metabolite levels contribute to transcriptional adaptation to iron deprivation in Saccharomyces cerevisiae.

Ihrig J, Hausmann A, Hain A, Richter N, Hamza I, Lill R, Mühlenhoff U.

Eukaryot Cell. 2010 Mar;9(3):460-71. doi: 10.1128/EC.00213-09. Epub 2009 Dec 11.


Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast.

Nishizawa M, Komai T, Katou Y, Shirahige K, Ito T, Toh-E A.

PLoS Biol. 2008 Dec 23;6(12):2817-30. doi: 10.1371/journal.pbio.0060326.


Structure and properties of transcriptional networks driving selenite stress response in yeasts.

Salin H, Fardeau V, Piccini E, Lelandais G, Tanty V, Lemoine S, Jacq C, Devaux F.

BMC Genomics. 2008 Jul 15;9:333. doi: 10.1186/1471-2164-9-333.


Three cell wall mannoproteins facilitate the uptake of iron in Saccharomyces cerevisiae.

Protchenko O, Ferea T, Rashford J, Tiedeman J, Brown PO, Botstein D, Philpott CC.

J Biol Chem. 2001 Dec 28;276(52):49244-50. Epub 2001 Oct 22.


Mechanisms of copper toxicity in Saccharomyces cerevisiae determined by microarray analysis.

Yasokawa D, Murata S, Kitagawa E, Iwahashi Y, Nakagawa R, Hashido T, Iwahashi H.

Environ Toxicol. 2008 Oct;23(5):599-606. doi: 10.1002/tox.20406.


Identification of an acetate-tolerant strain of Saccharomyces cerevisiae and characterization by gene expression analysis.

Haitani Y, Tanaka K, Yamamoto M, Nakamura T, Ando A, Ogawa J, Shima J.

J Biosci Bioeng. 2012 Dec;114(6):648-51. doi: 10.1016/j.jbiosc.2012.07.002. Epub 2012 Jul 27.


Saccharomyces cerevisiae glutaredoxin 5-deficient cells subjected to continuous oxidizing conditions are affected in the expression of specific sets of genes.

Bellí G, Molina MM, García-Martínez J, Pérez-Ortín JE, Herrero E.

J Biol Chem. 2004 Mar 26;279(13):12386-95. Epub 2004 Jan 13.

Supplemental Content

Support Center